Molecular and Cellular Biochemistry

, Volume 384, Issue 1–2, pp 59–69 | Cite as

Rotenone-induced oxidative stress and apoptosis in human liver HepG2 cells

  • M. A. Siddiqui
  • J. Ahmad
  • N. N. Farshori
  • Q. Saquib
  • S. Jahan
  • M. P. Kashyap
  • M. Ahamed
  • J. Musarrat
  • A. A. Al-Khedhairy
Article

Abstract

Rotenone, a commonly used pesticide, is well documented to induce selective degeneration in dopaminergic neurons and motor dysfunction. Such rotenone-induced neurodegenration has been primarily suggested through mitochondria-mediated apoptosis and reactive oxygen species (ROS) generation. But the status of rotenone induced changes in liver, the major metabolic site is poorly investigated. Thus, the present investigation was aimed to study the oxidative stress-induced cytotoxicity and apoptotic cell death in human liver cells-HepG2 receiving experimental exposure of rotenone (12.5–250 μM) for 24 h. Rotenone depicted a dose-dependent cytotoxic response in HepG2 cells. These cytotoxic responses were in concurrence with the markers associated with oxidative stress such as an increase in ROS generation and lipid peroxidation as well as a decrease in the glutathione, catalase, and superoxide dismutase levels. The decrease in mitochondrial membrane potential also confirms the impaired mitochondrial activity. The events of cytotoxicity and oxidative stress were found to be associated with up-regulation in the expressions (mRNA and protein) of pro-apoptotic markers viz., p53, Bax, and caspase-3, and down-regulation of anti-apoptotic marker Bcl-2. The data obtain in this study indicate that rotenone-induced cytotoxicity in HepG2 cells via ROS-induced oxidative stress and mitochondria-mediated apoptosis involving p53, Bax/Bcl-2, and caspase-3.

Keywords

HepG2 cells Rotenone Cytotoxicity Oxidative stress Apoptosis 

Notes

Acknowledgments

Financial support from National Plan for Sciences and Technology (NPST Project No. 10-ENV1314-02) and DNA Research Chair, King Saud University, Riyadh is acknowledged.

References

  1. 1.
    Radad K, Rausch WD, Gille G (2006) Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386PubMedCrossRefGoogle Scholar
  2. 2.
    Kitamura Y, Inden M, Miyamura A, Kakimura J, Taniguchi T, Shimohama S (2002) Possible involvement of both mitochondria and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci Lett 333:25–28PubMedCrossRefGoogle Scholar
  3. 3.
    Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764PubMedGoogle Scholar
  4. 4.
    Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30:475–483PubMedCrossRefGoogle Scholar
  5. 5.
    Lee J, Huang MS, Yang IC, Lai TC, Wang JL, Pang VF, Hsiao M, Kuo MY (2008) Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis. Biochem Biophys Res Commun 371:33–38PubMedCrossRefGoogle Scholar
  6. 6.
    Deng YT, Huang HC, Lin JK (2010) Rotenone induces apoptosis in MCF-7 human breast cancer cell-mediated ROS through JNK and p38 signaling. Mol Carcinog 49:141–151PubMedGoogle Scholar
  7. 7.
    Wang G, Qi C, Fan GH, Zhou HY, Chen SD (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 579:4005–4011PubMedCrossRefGoogle Scholar
  8. 8.
    Armstrong JS, Hornung B, Lecane P, Jones DP, Knox SJ (2001) Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW. Biochem Biophys Res Commun 289:973–978PubMedCrossRefGoogle Scholar
  9. 9.
    Tada-Oikawa S, Hiraku Y, Kawanishi M, Kawanishi S (2003) Mechanism for generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenone-induced apoptosis. Life Sci 73:3277–3288PubMedCrossRefGoogle Scholar
  10. 10.
    Chung WG, Miranda CL, Maier CS (2007) Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res 1176:133–142PubMedCrossRefGoogle Scholar
  11. 11.
    Watabe M, Nakaki T (2004) Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311:948–953PubMedCrossRefGoogle Scholar
  12. 12.
    Siddiqui MA, Kashyap MP, Khanna VK, Yadav S, Al-Khedhairy AA, Musarrat J, Pant AB (2010) Association of dopamine DA-D2 receptor in rotenone-induced cytotoxicity in PC12 cells. Toxicol Ind Health 26:533–542PubMedCrossRefGoogle Scholar
  13. 13.
    Siddiqui MA, Saquib Q, Ahamed M, Ahmad J, Al-Khedhairy AA, Abou-Tarboush FM, Musarrat J (2011) Effect of Trans-resveratrol on rotenone induced cytotoxicity in human breast adenocarcinoma cells. Toxicol Int 18:105–110PubMedCrossRefGoogle Scholar
  14. 14.
    Swarnkar S, Singh S, Mathur R, Patro IK, Nath C (200) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology 272:17–22Google Scholar
  15. 15.
    Olanow CW (2007) The pathogenesis of cell death in Parkinson’s disease. Move Disord 22:S335–S342CrossRefGoogle Scholar
  16. 16.
    Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro 22:1461–1468PubMedCrossRefGoogle Scholar
  17. 17.
    Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886PubMedCrossRefGoogle Scholar
  18. 18.
    Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S (2008) Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine 13:37–48PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang X, Yao Y, Lou Y, Jiang H, Wang X, Chai X, Zeng S (2010) Metabolism of ebracteolata compound B studied in vitro with human liver microsomes, HepG2 cells and recombinant human enzymes. Drug Metab Dispos 38:2157–2165PubMedCrossRefGoogle Scholar
  20. 20.
    Birringer M, Lington D, Vertuani S, Manfredini S, Scharlau D, Glei M, Ristow M (2010) Proapoptotic effects of long-chain vitamin E metabolites in HepG2 cells are mediated by oxidative stress. Free Radic Biol Med 49:1315–1322PubMedCrossRefGoogle Scholar
  21. 21.
    Kim JH, Kim D, Kim J, Hwang JK (2011) Euchresta horsfieldii Benn. Activates peroxisome proliferator-activated receptor α and regulates expression of genes involved in fatty acid metabolism in human HepG2 cells. J Ethnopharmacol 33:244–247CrossRefGoogle Scholar
  22. 22.
    Dong H, Lin W, Wu J, Chen T (2010) Flavonoids activate pregnane × receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochem 11:23PubMedCrossRefGoogle Scholar
  23. 23.
    Yokota SI, Higashi E, Fukami T, Yokoi T, Nakajima M (2011) Human CYP2A6 is regulated by nuclear factor-erythroid 2 related factor 2. Biochem Pharmacol 81:289–294PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang Y, Zolfaghari R, Ross AC (2010) Multiple retinoic acid response elements cooperate to enhance the inducibility of CYP26A1 gene expression in liver. Gene 464:32–43PubMedCrossRefGoogle Scholar
  25. 25.
    Moore PD, Yedjou CG, Tchounwou PB (2010) Malathion-induced oxidative stress, cytotoxicity and genotoxicity in human liver carcinoma (HepG2) cells. Environ Toxicol 25:221–226PubMedCrossRefGoogle Scholar
  26. 26.
    Song MO, Lee CH, Yang HO, Freedman JH (2012) Endosulfan upregulates AP-1 binding and ARE-mediated transcription via ERK1/2 and p38 activation in HepG2 cells. Toxicology 292:23–32PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang X, Zhou X, Chen R, Zhang H (2012) Radiosensitization by inhibiting complex I activity in human hepatoma HepG2 cells to X-ray radiation. J Radiat Res 53:257–263PubMedCrossRefGoogle Scholar
  28. 28.
    Pant AB, Agarwal AK, Sharma VP, Seth PK (2001) In vitro cytotoxicity evaluation of plastic biomedical devices. Hum Exp Toxicol 20:412–417PubMedCrossRefGoogle Scholar
  29. 29.
    Siddiqui MA, Singh G, Kashyap MP, Khanna VK, Yadav S, Chandra D, Pant AB (2008) Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicol In Vitro 22:1681–1688PubMedCrossRefGoogle Scholar
  30. 30.
    Siddiqui MA, Kashyap MP, Kumar V, Al-Khedhairy AA, Musarrat J, Pant AB (2010) Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol In Vitro 24:1592–1598PubMedCrossRefGoogle Scholar
  31. 31.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310PubMedCrossRefGoogle Scholar
  32. 32.
    Chandra D, Ramana KV, Wang L, Christensen BN, Bhatnagar A, Srivastava SK (2002) Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin. Invest Ophthalmol Vis Sci 43:2285–2292PubMedGoogle Scholar
  33. 33.
    Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394PubMedCrossRefGoogle Scholar
  34. 34.
    Kakkar PS, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132Google Scholar
  35. 35.
    Zhang Y, Jiang L, Jiang L, Geng C, Li L, Shao J, Zhong L (2011) Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chem Biol Interact 189:186–191PubMedCrossRefGoogle Scholar
  36. 36.
    Siddiqui MA, Kumar V, Kashyap MP, Agarwal M, Singh AK, Jahan S, Khanna VK, Al-Khedhairy AA, Musarrat J, Pant AB (2012) Short term exposure of 4-hydroxynonenal induces mitochondria mediated apoptosis in PC12 cells. Hum Exp Toxicol 31:336–345PubMedCrossRefGoogle Scholar
  37. 37.
    Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, AlSalhi MS, Alrokayan SA (2011) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101–108PubMedCrossRefGoogle Scholar
  38. 38.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  39. 39.
    Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, Akaik A (2012) Glycogen synthase kinase-3b activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem Biophys Res Commun 426:94–99PubMedCrossRefGoogle Scholar
  40. 40.
    Swarnkar S, Singh S, Goswami P, Mathur R, Patro IK, Nath C (2012) Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 37:2178–2189PubMedCrossRefGoogle Scholar
  41. 41.
    Juan-García A, Manyes L, Ruiz MJ, Font G (2013) Involvement of enniatin-induced cytotoxicity in human HepG2 cells. Toxicol Lett 218:166–173PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang HM, Zhang Y, Zhang BX (2011) The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res 50:78–82PubMedCrossRefGoogle Scholar
  43. 43.
    Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL 60 cells. FASEB J 16:1263–1265PubMedGoogle Scholar
  44. 44.
    Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, P′erianin A (2003) TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 66:476–482PubMedCrossRefGoogle Scholar
  45. 45.
    Herrera B, Murillo MM, A′lvarez-Barrientos A, Beltra′n J, Fern′andez M, Fabregat I (2004) Source of early reactive oxygen species in the apoptosis induced by transforming growth factor-beta in fetal rat hepatocytes. Free Radic Biol Med 36:16–26PubMedCrossRefGoogle Scholar
  46. 46.
    Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10:1611–1626PubMedCrossRefGoogle Scholar
  47. 47.
    Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRefGoogle Scholar
  48. 48.
    Czaja MJ, Liu H, Wang Y (2003) Oxidant-induced hepatocyte injury from menadione is regulated by ERK and AP-1 signaling. Hepatology 37:1405–1413PubMedCrossRefGoogle Scholar
  49. 49.
    Dornetshuber R, Heffeter P, Kamyar MR, Peterbauer T, Berger W, Lemmens-Gruber R (2007) Enniatin exerts p53-dependent cytostatic and p53-independent cytotoxic activities against human cancer cells. Chem Res Toxicol 20:465–473PubMedCrossRefGoogle Scholar
  50. 50.
    Mronga T, Stahnke T, Goldbaum O, Richter-Landsberg C (2004) Mitochondrial 576 pathway is involved in hydrogen-peroxide induced apoptotic cell death of oligo- 577 dendrocytes. Glia 46:446–455PubMedCrossRefGoogle Scholar
  51. 51.
    Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870PubMedCrossRefGoogle Scholar
  52. 52.
    Galluzzi L, Morselli E, Kepp O, Tajeddine N, Kroemer G (2008) Targeting p53 to mitochondria for cancer therapy. Cell Cycle 7:1949–1955PubMedCrossRefGoogle Scholar
  53. 53.
    Segui B, Legembre P (2010) Redistribution of CD95 into the lipid rafts to treat cancer cells? Recent Pat Anticancer Drug Discov 5:22–28PubMedCrossRefGoogle Scholar
  54. 54.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  55. 55.
    Bellamy CO, Prost S, Wyllie AH, Harrison DJ (1997) UV but not gammairradiation induces specific transcriptional activity of p53 in primary hepatocytes. J Pathol 183:177–181PubMedCrossRefGoogle Scholar
  56. 56.
    Li J, Cheung H-Y, Zhang Z, Chan GKL, Fong W-F (2007) Andrographolide induces cell cycle arrest at G2/M phase and cell death in HepG2 cells via alteration of reactive oxygen species. Eur J Pharmacol 568:31–44PubMedCrossRefGoogle Scholar
  57. 57.
    Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636PubMedCrossRefGoogle Scholar
  58. 58.
    Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun 331:851–858PubMedCrossRefGoogle Scholar
  59. 59.
    McGill G, Fisher DE (1997) Apoptosis in tumorigenesis and cancer therapy. Front Biosci 2:353–379Google Scholar
  60. 60.
    Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655PubMedCrossRefGoogle Scholar
  61. 61.
    Xu J, Ji L-D, Xu L-H (2006) Lead-induced apoptosis in PC 12 cells: Involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166:160–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. A. Siddiqui
    • 1
  • J. Ahmad
    • 1
  • N. N. Farshori
    • 2
  • Q. Saquib
    • 1
  • S. Jahan
    • 3
  • M. P. Kashyap
    • 3
  • M. Ahamed
    • 4
  • J. Musarrat
    • 1
  • A. A. Al-Khedhairy
    • 1
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
  3. 3.In Vitro Toxicology LaboratoryCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  4. 4.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations