Advertisement

Molecular and Cellular Biochemistry

, Volume 383, Issue 1–2, pp 201–211 | Cite as

Overexpression of β-NGF promotes differentiation of bone marrow mesenchymal stem cells into neurons through regulation of AKT and MAPK pathway

  • Jun Yuan
  • Guorong Huang
  • Zhe Xiao
  • Lvbiao Lin
  • Tianwang Han
Article

Abstract

Bone marrow stromal stem cells (BMSCs) are fibroblastic in shape and capable of self-renewal and have the potential for multi-directional differentiation. Nerve growth factor (NGF), a homodimeric polypeptide, plays an important role in the nervous system by supporting the survival and growth of neural cells, regulating cell growth, promoting differentiation into neuron, and neuron migration. Adenoviral vectors are DNA viruses that contain 36 kb of double-stranded DNA allowing for transmission of the genes to the host nucleus but not inserting them into the host chromosome. The present study aimed to investigate the induction efficiency and differentiation of neural cells from BMSCs by β-NGF gene transfection with recombinant adenoviral vector (Ad-β-NGF) in vitro. The results of immunochemical assay confirmed the induced cells as neuron cells. Moreover, flow cytometric analysis, Annexin-V-FITC/PI, and BrdU assay revealed that chemical inducer β-mercaptoethanol (β-met) triggered apoptosis of BMSCs, as evidenced by inhibition of DNA fragmentation, nuclear condensation, translocation of phospholipid phosphatidylserine, and activation of caspase-3. Furthermore, the results of western blotting showed that β-met suppressed AKT signaling pathway and regulated the MAPKs during differentiation of BMSCs. In contrast, Ad-β-NGF effectively induced the differentiation of BMSCs without causing any cytopathic phenomenon and apoptotic cell death. Moreover, Ad-β-NGF recovered the expression level of phosphorylated AKT and MAPKs in cells exposed to chemical reagents. Taken together, these results suggest that β-NGF gene transfection promotes the differentiation of BMSCs into neurons through regulation of AKT and MAPKs signaling pathways.

Keywords

BMSCs NGF Neuron Cell differentiation 

References

  1. 1.
    Hokari M, Kuroda S, Shichinohe H, Yano S, Hida K, Iwasaki Y (2008) Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. J Neurosci Res 86:1024–1035. doi: 10.1002/jnr.21572 PubMedCrossRefGoogle Scholar
  2. 2.
    Friedenstein AJ (1976) Precursor cells of mechanocytes. Int Rev Cytol 47:327–359PubMedCrossRefGoogle Scholar
  3. 3.
    Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20. doi: 10.1161/01.RES.0000135902.99383.6f PubMedCrossRefGoogle Scholar
  4. 4.
    Jin HJ, Park SK, Oh W, Yang YS, Kim SW, Choi SJ (2009) Down-regulation of CD105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 381:676–681. doi: 10.1016/j.bbrc.2009.02.118 PubMedCrossRefGoogle Scholar
  5. 5.
    Woodbury D, Reynolds K, Black IB (2002) Adult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res 69:908–917. doi: 10.1002/jnr.10365 PubMedCrossRefGoogle Scholar
  6. 6.
    Lu J, Moochhala S, Moore XL, Ng KC, Tan MH, Lee LK, He B, Wong MC, Ling EA (2006) Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury. Neurosci Lett 398:12–17. doi: 10.1016/j.neulet.2005.12.053 PubMedCrossRefGoogle Scholar
  7. 7.
    Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113:1701–1710. doi: 10.1172/JCI20935 PubMedGoogle Scholar
  8. 8.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716PubMedCrossRefGoogle Scholar
  9. 9.
    Li Y, Chen J, Chopp M (2001) Adult bone marrow transplantation after stroke in adult rats. Cell Transplant 10:31–40PubMedGoogle Scholar
  10. 10.
    Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20:1311–1319. doi: 10.1097/00004647-200009000-00006 PubMedCrossRefGoogle Scholar
  11. 11.
    Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. NeuroReport 11:3001–3005PubMedCrossRefGoogle Scholar
  12. 12.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370PubMedCrossRefGoogle Scholar
  13. 13.
    Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S, Taga T, Okano H, Hata J, Umezawa A (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68:235–244PubMedCrossRefGoogle Scholar
  14. 14.
    García R, Aguiar J, Alberti E, de la Cuétara K, Pavón N (2004) Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun 316:753–754. doi: 10.1016/j.bbrc.2004.02.111 PubMedCrossRefGoogle Scholar
  15. 15.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, Uchida H, Sasaki K, Ito Y, Kato K, Honmou O, Houkin K, Date I, Hamada H (2004) BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 9:189–197. doi: 10.1016/j.ymthe.2003.10.012 PubMedCrossRefGoogle Scholar
  16. 16.
    Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59PubMedCrossRefGoogle Scholar
  17. 17.
    Fan BS, Lou JY (2011) Enhancement of angiogenic effect of co-transfection human NGF and VEGF genes in rat bone marrow mesenchymal stem cells. Gene 485:167–171. doi: 10.1016/j.gene.2011.06.027 PubMedCrossRefGoogle Scholar
  18. 18.
    Wang TH, Feng ZT, Wei P, Li H, Shi ZJ, Li LY (2008) Effects of pcDNA3-beta-NGF gene-modified BMSC on the rat model of Parkinson’s disease. J Mol Neurosci 35:161–169. doi: 10.1007/s12031-007-9032-8 PubMedCrossRefGoogle Scholar
  19. 19.
    Colafrancesco V, Villoslada P (2011) Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Arch Ital Biol 149:183–192PubMedGoogle Scholar
  20. 20.
    Ding J, Cheng Y, Gao S, Chen J (2011) Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res 89:222–230. doi: 10.1002/jnr.22535 PubMedCrossRefGoogle Scholar
  21. 21.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. doi: 10.1080/14653240600855905 PubMedCrossRefGoogle Scholar
  22. 22.
    Meirelles LaS, Nardi NB (2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711CrossRefGoogle Scholar
  23. 23.
    Wang Z, Deng Q, Zhang X, Zhang J (2009) Treatment of injured neurons with bone marrow stem cells cotransfected by hTERT and Ad-BDNF in vitro. J Mol Neurosci 38:265–272. doi: 10.1007/s12031-009-9208-5 PubMedCrossRefGoogle Scholar
  24. 24.
    Tao YX, Xu HW, Zheng QY, FitzGibbon T (2010) Noggin induces human bone marrow-derived mesenchymal stem cells to differentiate into neural and photoreceptor cells. Indian J Exp Biol 48:444–452PubMedGoogle Scholar
  25. 25.
    Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23:2850–2860. doi: 10.1038/sj.onc.1207534 PubMedCrossRefGoogle Scholar
  26. 26.
    Feng Z, Li C, Jiao S, Hu B, Zhao L (2011) In vitro differentiation of rat bone marrow mesenchymal stem cells into hepatocytes. Hepatogastroenterology 58:2081–2086. doi: 10.5754/hge11220 PubMedCrossRefGoogle Scholar
  27. 27.
    Ou YC, Yang CR, Cheng CL, Raung SL, Hung YY, Chen CJ (2007) Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT. Eur J Pharmacol 563:49–60. doi: 10.1016/j.ejphar.2007.01.071 PubMedCrossRefGoogle Scholar
  28. 28.
    Gao Q, Li Y, Chopp M (2005) Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience 136:123–134. doi: 10.1016/j.neuroscience.2005.06.091 PubMedCrossRefGoogle Scholar
  29. 29.
    Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C (2007) Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 50:243–250. doi: 10.1016/j.neuint.2006.08.007 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jun Yuan
    • 1
  • Guorong Huang
    • 1
  • Zhe Xiao
    • 1
  • Lvbiao Lin
    • 1
  • Tianwang Han
    • 1
  1. 1.Department of Neurovascular SurgeryFirst Hospital Affiliated to Shantou UniversityShantouChina

Personalised recommendations