Advertisement

Molecular and Cellular Biochemistry

, Volume 381, Issue 1–2, pp 243–255 | Cite as

Matrix metalloproteinase-2 (MMP-2) generates soluble HLA-G1 by cell surface proteolytic shedding

  • Roberta RizzoEmail author
  • Alessandro Trentini
  • Daria Bortolotti
  • Maria C. Manfrinato
  • Antonella Rotola
  • Massimiliano Castellazzi
  • Loredana Melchiorri
  • Dario Di Luca
  • Franco Dallocchio
  • Enrico Fainardi
  • Tiziana Bellini
Article

Abstract

Human leukocyte antigen-G (HLA-G) molecules are non-classical HLA class I antigens with an important role in pregnancy immune regulation and inflammation control. Soluble HLA-G proteins can be generated through two mechanisms: alternative splicing and proteolytic release, which is known to be metalloprotease mediated. Among this class of enzymes, matrix metalloproteinases (MMPs) might be involved in the HLA-G1 membrane cleavage. Of particular interest are MMP-2 and MMP-9, which regulate the inflammatory process by cytokine and chemokine modulation. We evaluated the effect of MMP-9 and MMP-2 on HLA-G1 membrane shedding. In particular, we analyzed the in vitro effect of these two gelatinases on the secretion of HLA-G1 via proteolytic cleavage in 221-G1-transfected cell line, in JEG3 cell line, and in peripheral blood mononuclear cells. The results obtained by both cell lines showed the role of MMP-2 in HLA-G1 shedding. On the contrary, MMP-9 was not involved in this process. In addition, we identified three possible highly specific cleavage sites for MMP-2, whereas none were detected for MMP-9. This study suggests an effective link between MMP-2 and HLA-G1 shedding, increasing our knowledge on the regulatory machinery beyond HLA-G regulation in physiological and pathological conditions.

Keywords

HLA-G Matrix metalloproteinase Protein shedding Inflammation 

Abbreviations

HLA-G

Human leukocyte antigen-G

MPase

Metalloproteinase

MMP

Matrix metalloproteinase

ADAM

A disintegrin and metalloproteinase

Notes

Acknowledgments

We thank Iva Pivanti for her skillful technical assistance. We also thank Linda Marie Sartor for revision of the English language. This work was supported by the Research Program Regione Emilia Romagna—University 2007–2009 (Innovative Research)—code PRUa1a-2007-008.

Supplementary material

11010_2013_1708_MOESM1_ESM.tif (4.8 mb)
Supplementary Fig. 1. Zymogram of MMP-9 and MMP-2 after 2-hr incubation. Both MMP-9 and MMP-2 were activated (MMP-9: 82 kDa and 66 kDa band; MMP-2 66 kDa band)
11010_2013_1708_MOESM2_ESM.tif (573 kb)
Supplementary Fig. 2. HLA-G5 levels in 221-G1 culture supernatants in a) FBS-free culture condition, b) after MMP-2 and EDTA treatment, and c) MMP-2 and cycloheximide (CYCLO). The cell culture supernatants were analyzed with 5A6G7 moAb (Exbio) specific for HLA-G5 isoform

References

  1. 1.
    Baricordi OR, Stignani M, Melchiorri L, Rizzo R (2008) HLA-G and inflammatory diseases. Inflamm Allergy Drug Targ 7:67–74CrossRefGoogle Scholar
  2. 2.
    Carosella ED, Moreau P, Le Maoult J, Le Discorde M, Dausset J, Rouas-Freiss N (2003) HLA-G molecules: from maternal-fetal tolerance to tissue acceptance. Adv Immunol 81:199–252PubMedCrossRefGoogle Scholar
  3. 3.
    Rouas-Freiss N, Gonçalves RM, Menier C, Dausset J, Carosella ED (1997) Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc Natl Acad Sci USA 94:11520–11525PubMedCrossRefGoogle Scholar
  4. 4.
    Hunt JS, Petroff MG, McIntire RH, Ober C (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19:681–693PubMedCrossRefGoogle Scholar
  5. 5.
    Lila N, Carpentier A, Amrein C, Khalil-Daher I, Dausset J, Carosella ED (2000) Implication of HLA-G molecule in heart-graft acceptance. Lancet 355:2138PubMedCrossRefGoogle Scholar
  6. 6.
    Lila N, Rouas-Freiss N, Dausset J, Carpentier A, Carosella ED (2001) Soluble HLA-G protein secreted by allo-specific CD4 + T cells suppresses the allo-proliferative response: a CD4+ T cell regulatory mechanism. Proc Natl Acad Sci USA 98:12150–12155PubMedCrossRefGoogle Scholar
  7. 7.
    Créput C, Durrbach A, Menier C, Guettier C, Samuel D, Dausset J, Charpentier B, Carosella ED, Rouas-Freiss N (2003) Human leukocyte antigen-G (HLA-G) expression in biliary epithelial cells is associated with allograft acceptance in liver-kidney transplantation. J Hepatol 39:587–594PubMedCrossRefGoogle Scholar
  8. 8.
    Creput C, Le Friec G, Bahri R, Amiot L, Charpentier B, Carosella E, Rouas-Freiss N, Durrbach A (2003) Detection of HLA-G in serum and graft biopsy associated with fewer acute rejections following combined liver-kidney transplantation: possible implications for monitoring patients. Hum Immunol 64:1033–1038PubMedCrossRefGoogle Scholar
  9. 9.
    Creput C, Durrbach A, Charpentier B, Carosella ED, Rouas-Freiss N (2003) HLA-G: immunoregulatory molecule involved in allograft acceptance. Nephrologie 24:451–456PubMedGoogle Scholar
  10. 10.
    Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, Avril MF, Dausset J, Guillet JG, Carosella ED (1998) HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci USA 95:4510–4515PubMedCrossRefGoogle Scholar
  11. 11.
    Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED (2005) HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res 65:10139–10144PubMedCrossRefGoogle Scholar
  12. 12.
    Rouas-Freiss N, Moreau P, Menier C, Carosella ED (2003) HLA-G in cancer: a way to turn off the immune system. Semin Cancer Biol 13:325–336PubMedCrossRefGoogle Scholar
  13. 13.
    LeMaoult J, Rouas-Freiss N, Carosella ED (2005) Immuno-tolerogenic functions of HLA-G: relevance in transplantation and oncology. Autoimmun Rev 4:503–509PubMedCrossRefGoogle Scholar
  14. 14.
    Weng PJ, Fu YM, Ding SX, Xu DP, Lin A, Yan WH (2011) Elevation of plasma soluble human leukocyte antigen-G in patients with chronic hepatitis C virus infection. Hum Immunol 72:406–411PubMedCrossRefGoogle Scholar
  15. 15.
    Fainardi E, Castellazzi M, Stignani M, Morandi F, Sana G, Gonzalez R, Pistoia V, Baricordi OR, Sokal E, Peña J (2011) Emerging topics and new perspectives on HLA-G. Cell Mol Life Sci 68:433–451PubMedCrossRefGoogle Scholar
  16. 16.
    Fainardi E, Rizzo R, Castellazzi M, Stignani M, Granieri E, Baricordi OR (2009) Potential role of soluble human leukocyte antigen-G molecules in multiple sclerosis. Hum Immunol 70:981–987PubMedCrossRefGoogle Scholar
  17. 17.
    Fainardi E, Rizzo R, Melchiorri L, Stignani M, Castellazzi M, Tamborino C, Paolino E, Tola MR, Granieri E, Baricordi OR (2008) CSF levels of soluble HLA-G and Fas molecules are inversely associated to MRI evidence of disease activity in patients with relapsing remitting multiple sclerosis. Mult Scler 14:446–454PubMedCrossRefGoogle Scholar
  18. 18.
    Fainardi E, Rizzo R, Melchiorri L, Stignani M, Castellazzi M, Caniatti ML, Baldi E, Tola MR, Granieri E, Baricordi OR (2007) Soluble HLA-G molecules are released as HLA-G5 and not as soluble HLA-G1 isoforms in CSF of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 192:219–225PubMedCrossRefGoogle Scholar
  19. 19.
    Fainardi E, Rizzo R, Melchiorri L, Castellazzi M, Paolino E, Tola MR, Granieri E, Baricordi OR (2006) Intrathecal synthesis of soluble HLA-G and HLA-I molecules are reciprocally associated to clinical and MRI activity in patients with multiple sclerosis. Mult Scler 12:2–12PubMedCrossRefGoogle Scholar
  20. 20.
    Fainardi E, Rizzo R, Melchiorri L, Vaghi L, Castellazzi M, Marzola A, Govoni V, Paolino E, Tola MR, Granieri E, Baricordi OR (2003) Presence of detectable levels of soluble HLA-G molecules in CSF of relapsing-remitting multiple sclerosis: relationship with CSF solubile HLA-I and IL-10 concentrations and MRI findings. J Neuroimmunol 142:149–158PubMedCrossRefGoogle Scholar
  21. 21.
    Rizzo R, Farina I, Bortolotti D, Galuppi E, Rotola A, Melchiorri L, Ciancio G, Di Luca D, Govoni M (2012) HLA-G may predict the disease course in patients with early rheumatoid arthritis. Hum Immunol doi. doi: 10.1016/j.humimm.2012.11.024 Google Scholar
  22. 22.
    Rizzo R, Rubini M, Govoni M, Padovan M, Melchiorri L, Stignani M, Carturan S, Ferretti S, Trotta F, Baricordi OR (2006) HLA-G 14-bp polymorphism regulates the methotrexate response in rheumatoid arthritis. Pharmacogenet Genomics 16:615–623PubMedCrossRefGoogle Scholar
  23. 23.
    Borghi A, Fogli E, Stignani M, Melchiorri L, Altieri E, Baricordi O, Rizzo R, Virgili A (2008) Soluble human leukocyte antigen-G and interleukin-10 levels in plasma of psoriatic patients: preliminary study on a possible correlation between generalized immune status, treatments and disease. Arch Dermatol Res 300:551–559PubMedCrossRefGoogle Scholar
  24. 24.
    Shiroishi M, Kuroki K, Rasubala L, Tsumoto K, Kumagai I, Kurimoto E, Kato K, Kohda D, Maenaka K (2006) Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). Proc Natl Acad Sci USA 103:16412–16417PubMedCrossRefGoogle Scholar
  25. 25.
    Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O’Callaghan C, Dunbar R, Ogg GS, Cerundolo V, Rolink A (1998) Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 160:3096–3100PubMedGoogle Scholar
  26. 26.
    Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7:273–282PubMedCrossRefGoogle Scholar
  27. 27.
    Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M (1997) A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186:1809–1818PubMedCrossRefGoogle Scholar
  28. 28.
    Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G, Vitale C, Bertone S, Moretta A, Moretta L, Mingari MC (1999) Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci USA 96:5674–5679PubMedCrossRefGoogle Scholar
  29. 29.
    Rajagopalan S, Long EO (1999) A human histocompatibility leucocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 189:1093–1099PubMedCrossRefGoogle Scholar
  30. 30.
    Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A, Bensussan A, Le Bouteiller F (2000) Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J Immunol 164:6100–6104PubMedGoogle Scholar
  31. 31.
    Du L, Xiao X, Wang C, Zhang X, Zheng N, Wang L, Zhang X, Li W, Wang S, Dong Z (2011) Human leukocyte antigen-G is closely associated with tumor immune escape in gastric cancer by increasing local regulatory T cells. Cancer Sci 102:1272–1280PubMedCrossRefGoogle Scholar
  32. 32.
    Marchal-Bras-Goncalves R, Rouas-Freiss N, Connan F, Choppin J, Dausset J, Carosella ED, Kirszenbaum M, Guillet J (2001) A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc 33:2355–2359PubMedCrossRefGoogle Scholar
  33. 33.
    Liang S, Ristich V, Arase H, Dausset J, Carosella ED, Horuzsko A (2008) Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6-STAT3 signaling pathway. Proc Natl Acad Sci USA 105:8357–8362PubMedCrossRefGoogle Scholar
  34. 34.
    Gregori S, Tomasoni D, Pacciani V, Scirpoli M, Battaglia M, Magnani CF, Hauben E, Roncarolo MG (2010) Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 116:935–944PubMedCrossRefGoogle Scholar
  35. 35.
    Kapasi K, Albert SE, Yie S, Zavazava N, Librach CL (2000) HLA-G has a concentration-dependent effect on the generation of an allo-CTL response. Immunology 101:191–200PubMedCrossRefGoogle Scholar
  36. 36.
    Ishitani A, Geraghty D (1992) Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. proc natl acad sci usa 89:3947–3951PubMedCrossRefGoogle Scholar
  37. 37.
    Park GM, Lee S, Park B, Kim E, Shin J, Cho K, Ahn K (2004) Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem Biophys Res Commun 313:606–611PubMedCrossRefGoogle Scholar
  38. 38.
    Dong Y, Lieskovska J, Kedrin D, Porcelli S, Mandelboim O, Bushkin Y (2003) Soluble nonclassical HLA generated by the metalloproteinase pathway. Human Immunol 64:802–810CrossRefGoogle Scholar
  39. 39.
    Demaria S, Schwab R, Gottesman SRS, Bushkin Y (1994) Soluble β2-microglobulin-free class I heavy chains are released from the surface of activated and leukemia cells by a metalloprotease. J Biol Chem 269:6689–6694PubMedGoogle Scholar
  40. 40.
    Zidi I, Guillard C, Marcou C, Krawice-Radanne I, Sangrouber D, Rouas-Freiss N, Carosella ED, Moreau P (2006) Increase in HLA-G1 proteolytic shedding by tumor cells: a regulatory pathway controlled by NF-kappaB inducers. Cell Mol Life Sci 63:2669–2681PubMedCrossRefGoogle Scholar
  41. 41.
    Carey BW, Kim DY, Kovacs DM (2007) Presinilin/γ-secretase and α-secretase-like peptidases cleave human MHC class I proteins. Biochem J 401:121–127PubMedCrossRefGoogle Scholar
  42. 42.
    Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12:1075–1095PubMedGoogle Scholar
  43. 43.
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233PubMedCrossRefGoogle Scholar
  44. 44.
    Hernández-Pérez M, Mahalingam M (2012) Matrix metalloproteinases in health and disease: insights from dermatopathology. Am J Dermatopathol 34:565–579PubMedCrossRefGoogle Scholar
  45. 45.
    Choi S, Kim JY, Park JH, Lee ST, Han IO, Oh ES (2012) The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells. Biochem Biophys Res Commun 417:1260–1264PubMedCrossRefGoogle Scholar
  46. 46.
    Fainardi E, Castellazzi M, Tamborino C, Trentini A, Manfrinato MC, Baldi E, Tola MR, Dallocchio F, Granieri E, Bellini T (2009) Potential relevance of cerebrospinal fluid and serum levels and intrathecal synthesis of active matrix metalloproteinase-2 (MMP-2) as markers of disease remission in patients with multiple sclerosis. Mult Scler 15:547–554PubMedCrossRefGoogle Scholar
  47. 47.
    Fainardi E, Castellazzi M, Bellini T, Manfrinato MC, Baldi E, Casetta I, Paolino E, Granieri E, Dallocchio F (2006) Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12:294–301PubMedCrossRefGoogle Scholar
  48. 48.
    Nadarajah VD, van Putten M, Chaouch A, Garrood P, Straub V, Lochmüller H, Ginjaar HB, Aartsma-Rus AM, van Ommen GJ, den Dunnen JT, ‘t Hoen PA (2011) Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 21:569–578PubMedCrossRefGoogle Scholar
  49. 49.
    Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41PubMedCrossRefGoogle Scholar
  50. 50.
    Opdenakker G, Van Den Steen PE, Van Damme J (2001) Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 22:571–579PubMedCrossRefGoogle Scholar
  51. 51.
    McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206PubMedCrossRefGoogle Scholar
  52. 52.
    van der Meer A, Lukassen HG, van Lierop MJ, Wijnands F, Mosselman S, Braat DD, Joosten I (2004) Membrane-bound HLA-G activates proliferation and interferon-gamma production by uterine natural killer cells. Mol Hum Reprod 10:189–191PubMedCrossRefGoogle Scholar
  53. 53.
    Polakova K, Russ G (2000) Expression of the non classical HLA-G antigen in tumor cell lines is extremely restricted. Neoplasma 47:342–348PubMedGoogle Scholar
  54. 54.
    Malagutti N, Aimoni C, Balboni A, Stignani M, Melchiorri L, Borin M, Pastore A, Rizzo R, Baricordi OR (2008) Decreased production of human leukocyte antigen G molecules in sinonasal polyposis. Am J Rhinol 22:468–473PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi K, Matsumoto S, Morishima T, Kawabe T, Okamoto T (2000) Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. Cancer Res 60:3978–3984PubMedGoogle Scholar
  56. 56.
    Ongaro A, Stignani M, Pellati A, Melchiorri L, Massari L, Caruso G, De Mattei M, Caruso A, Baricordi OR, Rizzo R (2010) Human leukocyte antigen-G molecules are constitutively expressed by synovial fibroblasts and upmodulated in osteoarthritis. Hum Immunol 71:342–350PubMedCrossRefGoogle Scholar
  57. 57.
    Yao YQ, Barlow DH, Sargent IL (2005) Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J Immunol 175:8379–8385PubMedGoogle Scholar
  58. 58.
    Park B, Oh H, Lee S, Song Y, Shin J, Sung YC, Hwang SY, Ahn K (2002) The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol 168:3464–3469PubMedGoogle Scholar
  59. 59.
    Bellini T, Trentini A, Manfrinato MC, Tamborino C, Volta CA, Di Foggia V, Fainardi E, Dallocchio F, Castellazzi M (2012) Matrix metalloproteinase-9 activity detected in body fluids is the result of two different enzyme forms. J Biochem 151:493–499PubMedCrossRefGoogle Scholar
  60. 60.
    Velvizhi R, Prabir K (1996) Western blot of proteins from Coomassie-stained polyacrylamide gels. Anal Biochem 234:102–104CrossRefGoogle Scholar
  61. 61.
    Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW (2002) A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem 277:4485–4491PubMedCrossRefGoogle Scholar
  62. 62.
    Verspurten J, Gevaert K, Declercq W, Vandenabeele P (2009) Site predicting the cleavage of proteinase substrates. Trends Biochem Sci 34:319–323PubMedCrossRefGoogle Scholar
  63. 63.
    Zhao L, Teklemariam T, Hantash BM (2012) Reassessment of HLA-G isoform specificity of MEM-G/9 and 4H84 monoclonal antibodies. Tissue Antigens 80:231–238PubMedCrossRefGoogle Scholar
  64. 64.
    Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED (2001) HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol 166:5018–5026PubMedGoogle Scholar
  65. 65.
    Rebmann V, Busemann A, Lindemann M, Grosse-Wilde H (2003) Detection of HLA-G5 secreting cells. Hum Immunol 64:1017–1024PubMedCrossRefGoogle Scholar
  66. 66.
    Kridel SJ, Chen E, kotra LP, Howard EW, Mobashery S, Smith JW (2001) Substrate hydrolysis by matrix metalloproteinase-9. J Biological Chem 276:20572–20578CrossRefGoogle Scholar
  67. 67.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228PubMedCrossRefGoogle Scholar
  68. 68.
    Dıaz-Lagares A, Alegre E, LeMaoult J, Carosella ED, Gonzalez A (2008) Nitric oxide produces HLA-G nitration and induces metalloprotease-dependent shedding creating a tolerogenic milieu. Immunology 126:436–445PubMedCrossRefGoogle Scholar
  69. 69.
    Ghorpade A, Persidskaia R, Suryadevara R, Che M, Jaun Liu X, Persidsky Y, Gendelman HE (2001) Mononuclear phagocyte differentiation, activation, and viral infection regulate matrix metalloproteinase expression: implications for human immunodeficiency virus type 1-association dementia. J Virol 75:6572–6583PubMedCrossRefGoogle Scholar
  70. 70.
    Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arteroscler Thromb Vasc Biol 28:2108–2114CrossRefGoogle Scholar
  71. 71.
    Webster NL, Crowe SM (2006) Matrix meralloproteinase, their production by monocytes and macrophages and their potential role in HIV-related diseases. J Leukoc Biol 80:1052–1066PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roberta Rizzo
    • 1
    Email author
  • Alessandro Trentini
    • 2
  • Daria Bortolotti
    • 1
  • Maria C. Manfrinato
    • 2
  • Antonella Rotola
    • 1
  • Massimiliano Castellazzi
    • 2
  • Loredana Melchiorri
    • 1
  • Dario Di Luca
    • 1
  • Franco Dallocchio
    • 2
  • Enrico Fainardi
    • 3
  • Tiziana Bellini
    • 2
  1. 1.Section of Microbiology and Medical Genetics, Department of Medical SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Biomedical and Surgical SciencesUniversity of FerraraFerraraItaly
  3. 3.Neuroradiology Unit, Department of Neurosciences and RehabilitationAzienda Ospedaliera-Universitaria di FerraraFerraraItaly

Personalised recommendations