Molecular and Cellular Biochemistry

, Volume 381, Issue 1–2, pp 41–50 | Cite as

Exogenous hydrogen sulfide prevents cardiomyocyte apoptosis from cardiac hypertrophy induced by isoproterenol

  • Fanghao Lu
  • Jun Xing
  • Xinying Zhang
  • Shiyun Dong
  • Yajun Zhao
  • Lina Wang
  • Hulun Li
  • Fan Yang
  • Changqing Xu
  • Weihua ZhangEmail author


Oxidative stress is a crucial factor inducing cardiomyocyte apoptosis due to cardiac hypertrophy. Additional evidence has revealed that H2S plays an antioxidant role and is cytoprotective. Hence, we aimed to elucidate whether H2S prevents cardiomyocyte apoptosis due to cardiac hypertrophy via its antioxidant function. The cardiac hypertrophy model was obtained by injecting a high dose of isoproterenol (ISO) subcutaneously, and the hemodynamic parameters were measured in groups that received either ISO or ISO with the treatment of NaHS. TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling) and EM (electron microscopy) experiments were performed to determine the occurrence of apoptosis in heart tissues. The expression of caspase-3 protein in the cytoplasm and NADPH oxidase 4 (NOX4), and cytochrome c (cyt c) proteins in the mitochondria were analyzed using Western blotting. In contrast, to determine whether ISO-induced apoptosis in the cultured cardiomyocytes may be related to oxidative stress, JC-1 and MitoSOX assays were performed to detect the mitochondrial membrane potential and reactive oxygen species (ROS) production in the mitochondria. Exogenous H2S was found to ameliorate cardiac function. The histological observations obtained from TUNEL and EM demonstrated that treatment with NaHS inhibited the occurrence of cardiac apoptosis and improved cardiac structure. Moreover, H2S reduced the expression of the cleaved caspase-3, NOX4 and the leakage of cyt c from the mitochondria to the cytoplasm. We also observed that exogenous H2S could maintain the mitochondrial membrane potential and reduce ROS production in the mitochondria. Therefore, H2S reduces oxidative stress due to cardiac hypertrophy through the cardiac mitochondrial pathway.


Hydrogen sulfide (H2S) Cardiac hypertrophy Reactive oxygen species (ROS) Mitochondria 



This study was supported by National Natural Science Foundation of China (81170289,81170218, 81170178,81100163) and Yu Weihan grant for excellent younger scientists of Harbin Medical University (for Weihua Zhang) and Beaura of Science and Technology in Harbin (2012RFXXS045).


  1. 1.
    Drazner MH, Rame JE, Marino EK, Gottdiener JS, Kitzman DW, Gardin JM, Manolio TA, Dries DL, Siscovick DS (2004) Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within 5 years: the cardiovascular health study. J Am Coll Cardiol 43:2207–2215PubMedCrossRefGoogle Scholar
  2. 2.
    Maulik SK, Kumar S (2012) Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods 22:359–366PubMedCrossRefGoogle Scholar
  3. 3.
    Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907PubMedCrossRefGoogle Scholar
  4. 4.
    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 115:500–508PubMedGoogle Scholar
  5. 5.
    Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J (2010) Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res 106:1253–1264PubMedCrossRefGoogle Scholar
  6. 6.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  7. 7.
    Kuroda J, Ago T, Matsushima S, Zhai P, Schneider M, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart Proc. Natl Acad Sci USA 107:15565–15570CrossRefGoogle Scholar
  8. 8.
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16(13):1792–1798PubMedCrossRefGoogle Scholar
  9. 9.
    Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896PubMedCrossRefGoogle Scholar
  10. 10.
    Pan LL, Liu XH, Gong QH, Yang HB, Zhu YZ (2012) Role of cystathionine gamma-lyase/hydrogen sulfide pathway in cardiovascular disease: a novel therapeutic strategy? Antioxid Redox Signal 17(1):106–118PubMedCrossRefGoogle Scholar
  11. 11.
    Mishra PK, Tyagi N, Sen U, Givvimani S, Tyagi SC (2010) H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298(2):451–456CrossRefGoogle Scholar
  12. 12.
    Ni L, Zhou CQ, Duan QL, Lv JG, Fu XN, Xia Y, Wang DW (2011) β-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS ONE 6(11):27294–27305CrossRefGoogle Scholar
  13. 13.
    Fauconnier J, Andersson DC, Zhang SJ, Lanner JT, Wibom R, Katz A et al (2007) Effects of palmitate on Ca2+ handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142PubMedCrossRefGoogle Scholar
  14. 14.
    Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di Lisa F (2006) Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71:374–382PubMedCrossRefGoogle Scholar
  15. 15.
    Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Engl 38:3209–3212PubMedCrossRefGoogle Scholar
  16. 16.
    Shah AM, Channon KC (2004) Free radicals and redox signalling in cardiovascular disease (mini-symposium). Heart 90:485–487CrossRefGoogle Scholar
  17. 17.
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014PubMedCrossRefGoogle Scholar
  18. 18.
    Cave AC, Grieve DJ, Johar S et al (2005) NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc 360:2327–2334CrossRefGoogle Scholar
  19. 19.
    Heymes C, Bendall JK, Ratajczak P et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171PubMedCrossRefGoogle Scholar
  20. 20.
    Maack C, Kartes T, Kilter H et al (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target for statin treatment. Circulation 108:1567–1574PubMedCrossRefGoogle Scholar
  21. 21.
    Bendall JK, Cave AC, Heymes C et al (2002) Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296PubMedCrossRefGoogle Scholar
  22. 22.
    Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P, Selbitz AC, Schermuly RT, Ghofrani HA, Kwapiszewska G, Kummer W, Klepetko W, Hoda MA, Fink L, Hanze J, Seeger W, Grimminger F, Schmidt HH, Weissmann N (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267PubMedCrossRefGoogle Scholar
  23. 23.
    Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, Sorescu D (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907PubMedCrossRefGoogle Scholar
  24. 24.
    Jha S, Calvert JW, Duranski MR, Ramachandran A, Lefer DJ (2008) Hydrogensulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. Am J Physiol Heart Circ Physiol 295(2):801–806CrossRefGoogle Scholar
  25. 25.
    Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal 17(1):119–140PubMedCrossRefGoogle Scholar
  26. 26.
    Qu K, Chen CP, Halliwell B, Moore PK, Wong PT (2006) Hydrogen sulfide is a mediator of cerebral ischemic damage. Stroke 37(3):889–893PubMedCrossRefGoogle Scholar
  27. 27.
    Argaud L, Gomez L, Gateau-Roesch O, Couture-Lepetit E, Loufouat J, Robert D et al (2005) Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia–reperfusion injury. J Mol Cell Cardiol 39:893–899PubMedCrossRefGoogle Scholar
  28. 28.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C et al (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233PubMedCrossRefGoogle Scholar
  29. 29.
    Maack C, O’Rourke B (2007) Excitation–contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392PubMedCrossRefGoogle Scholar
  30. 30.
    Crompton M (1990) The role of Ca2+ in the function and dysfunction of heart mitochondria. In: Langer GA (ed) Calcium and the heart. Raven Press, New York, pp 167–198Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fanghao Lu
    • 1
  • Jun Xing
    • 2
  • Xinying Zhang
    • 1
  • Shiyun Dong
    • 1
  • Yajun Zhao
    • 1
  • Lina Wang
    • 1
  • Hulun Li
    • 3
  • Fan Yang
    • 1
  • Changqing Xu
    • 1
  • Weihua Zhang
    • 1
    Email author
  1. 1.Department of PathophysiologyHarbin Medical UniversityHarbinChina
  2. 2.Department of Gastroenterologic SurgeryThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Department of NeurobiologyHarbin Medical UniversityHarbinChina

Personalised recommendations