Molecular and Cellular Biochemistry

, Volume 380, Issue 1–2, pp 185–193 | Cite as

Spironolactone inhibits apoptosis in rat mesangial cells under hyperglycaemic conditions via the Wnt signalling pathway

  • Dan Zhu
  • Hongwei Yu
  • Hongjiang He
  • Jiuli Ding
  • Jie Tang
  • Dan Cao
  • Lirong HaoEmail author


Mesangial cells (MCs) play a crucial role in maintaining structure and function of glomerular tufts, providing structural support for capillary loops and modulating glomerular filtration by their contractility. MCs apoptosis occurs in experimental diabetic nephropathy, and this correlates with worsening albuminuria. Accumulating evidence suggests that mineralocorticoid receptor (MR) blockade effectively reduces proteinuria in diabetic nephropathy; however, it is rarely known whether spironolactone (SPI), a nonspecific MR antagonist, inhibits apoptosis in MCs under hyperglycaemic conditions. The objectives of this study are to determine the relationship between SPI and apoptosis, and investigate the cell signalling pathway by which SPI inhibits apoptosis. Rat MCs were treated with 30 mM d-glucose and 10−8, 10−7 or 10−6 M aldosterone (ALD) for 24 h. In some experiments, MCs were pretreated with 10−7 M SPI or 10 mM LiCl for 1 h. Apoptosis was evaluated by cell nucleus staining and flow cytometric analyses, and caspase-3 activity was assayed. Gene and protein expression were quantified using quantitative real-time PCR and Western blotting, respectively. SPI directly inhibited high glucose and ALD-induced MCs apoptosis in a caspase-dependent manner. Importantly, SPI inhibited MCs apoptosis via the Wnt signalling pathway. SPI promoted activation of the Wnt signalling pathway in MCs, leading to upregulation of Wnt4 and Wnt5a mRNA expression, decreased GSK-3β protein expression and increased β-catenin protein expression. As a conclusion, this study suggests that SPI may inhibit apoptosis in MCs during hyperglycaemic conditions via the Wnt signalling pathway. Blockade of the ALD system may represent a novel therapeutic strategy to prevent MCs injury under hyperglycaemic conditions.


Apoptosis GSK-3β Mesangial cells Spironolactone Wnt signalling 



This work was supported by a Grant from the Natural Science Foundation of Heilongjiang Province of China (Grant No. 201014).


  1. 1.
    Ritz E, Rychlik I, Locatelli F, Halimi S (1999) End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 34:795–808. doi: 10.1016/S0272-6386(99)70035-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Dalla Vestra M, Saller A, Mauer M, Fioretto P (2001) Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J Nephrol 14(Suppl 4):S51–S57PubMedGoogle Scholar
  3. 3.
    Kitamura H, Shimizu A, Masuda Y, Ishizaki M, Sugisaki Y, Yamanaka N (1998) Apoptosis in glomerular endothelial cells during the development of glomerulosclerosis in the remnant-kidney model. Exp Nephrol 6:328–336PubMedCrossRefGoogle Scholar
  4. 4.
    Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, Yamanaka N (1996) Apoptosis in progressive crescentic glomerulonephritis. Lab Invest 74:941–951PubMedGoogle Scholar
  5. 5.
    Mishra R, Emancipator SN, Kern T, Simonson MS (2005) High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 67:82–93. doi: 10.1111/j.1523-1755.2005.00058.x PubMedCrossRefGoogle Scholar
  6. 6.
    Sugiyama H, Kashihara N, Makino H, Yamasaki Y, Ota A (1996) Apoptosis in glomerular sclerosis. Kidney Int 49:103–111PubMedCrossRefGoogle Scholar
  7. 7.
    Pesce C, Menini S, Pricci F, Favre A, Leto G, DiMario U, Pugliese G (2002) Glomerular cell replication and cell loss through apoptosis in experimental diabetes mellitus. Nephron 90:484–488. doi: 54738 PubMedCrossRefGoogle Scholar
  8. 8.
    Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, Savill J (1994) Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest 94:2105–2116. doi: 10.1172/JCI117565 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Boldyreff B, Wehling M (2003) Non-genomic actions of aldosterone: mechanisms and consequences in kidney cells. Nephrol Dial Transplant 18:1693–1695PubMedCrossRefGoogle Scholar
  10. 10.
    Brilla CG, Matsubara LS, Weber KT (1993) Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 25:563–575. doi: 10.1006/jmcc.1993.1066 PubMedCrossRefGoogle Scholar
  11. 11.
    Chrysostomou A, Becker G (2001) Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med 345:925–926. doi: 10.1056/NEJM200109203451215 PubMedCrossRefGoogle Scholar
  12. 12.
    Lai L, Chen J, Hao CM, Lin S, Gu Y (2006) Aldosterone promotes fibronectin production through a Smad2-dependent TGF-beta1 pathway in mesangial cells. Biochem Biophys Res Commun 348:70–75. doi: 10.1016/j.bbrc.2006.07.057 PubMedCrossRefGoogle Scholar
  13. 13.
    Nishiyama A, Yao L, Fan Y, Kyaw M, Kataoka N, Hashimoto K, Nagai Y, Nakamura E, Yoshizumi M, Shokoji T, Kimura S, Kiyomoto H, Tsujioka K, Kohno M, Tamaki T, Kajiya F, Abe Y (2005) Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension 45:710–716. doi: 10.1161/01.HYP.0000154681.38944.9a PubMedCrossRefGoogle Scholar
  14. 14.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med 341:709–717. doi: 10.1056/NEJM199909023411001 PubMedCrossRefGoogle Scholar
  15. 15.
    Fujisawa G, Okada K, Muto S, Fujita N, Itabashi N, Kusano E, Ishibashi S (2004) Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int 66:1493–1502. doi: 10.1111/j.1523-1755.2004.00913.x PubMedCrossRefGoogle Scholar
  16. 16.
    Yuan J, Jia R, Bao Y (2007) Beneficial effects of spironolactone on glomerular injury in streptozotocin-induced diabetic rats. J Renin Angiotensin Aldosterone Syst 8:118–126. doi: 10.3317/jraas.2007.014 PubMedCrossRefGoogle Scholar
  17. 17.
    Guo C, Martinez-Vasquez D, Mendez GP, Toniolo MF, Yao TM, Oestreicher EM, Kikuchi T, Lapointe N, Pojoga L, Williams GH, Ricchiuti V, Adler GK (2006) Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology 147:5363–5373. doi: 10.1210/en.2006-0944 PubMedCrossRefGoogle Scholar
  18. 18.
    Han KH, Kang YS, Han SY, Jee YH, Lee MH, Han JY, Kim HK, Kim YS, Cha DR (2006) Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int 70:111–120. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  19. 19.
    Han SY, Kim CH, Kim HS, Jee YH, Song HK, Lee MH, Han KH, Kim HK, Kang YS, Han JY, Kim YS, Cha DR (2006) Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. J Am Soc Nephrol 17:1362–1372. doi: 10.1681/ASN.2005111196 PubMedCrossRefGoogle Scholar
  20. 20.
    Perez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, Bonventre JV, Gamba G, Bobadilla NA (2007) Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 292:F131–F139. doi: 10.1152/ajprenal.00147.2006 PubMedCrossRefGoogle Scholar
  21. 21.
    Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L (2001) Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 133:687–694. doi: 10.1038/sj.bjp.0704131 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lin CL, Wang JY, Huang YT, Kuo YH, Surendran K, Wang FS (2006) Wnt/beta-catenin signaling modulates survival of high glucose-stressed mesangial cells. J Am Soc Nephrol 17:2812–2820. doi: 10.1681/ASN.2005121355 PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu Dan, Hongjiang H, Hao L, Tang J, Cao D (2012) Aldosterone induces apoptosis via the Wnt signalling pathway. Afr J Pharmacy Pharmacol 6:1428–1434. doi: 10.5897/AJPP12.299 CrossRefGoogle Scholar
  24. 24.
    Wang FS, Lin CL, Chen YJ, Wang CJ, Yang KD, Huang YT, Sun YC, Huang HC (2005) Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology 146:2415–2423. doi: 10.1210/en.2004-1050 PubMedCrossRefGoogle Scholar
  25. 25.
    Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446PubMedCrossRefGoogle Scholar
  26. 26.
    Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JH (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514. doi: 10.1074/jbc.M110789200 PubMedCrossRefGoogle Scholar
  27. 27.
    Chen C, Liang W, Jia J, van Goor H, Singhal PC, Ding G (2009) Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways. Nephron Exp Nephrol 113:e26–e34. doi: 10.1159/000228080 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Merkel CE, Karner CM, Carroll TJ (2007) Molecular regulation of kidney development: is the answer blowing in the Wnt? Pediatr Nephrol 22:1825–1838. doi: 10.1007/s00467-007-0504-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, Rosenblum ND (2011) Beta-catenin causes renal dysplasia via upregulation of Tgfbeta2 and Dkk1. J Am Soc Nephrol 22:718–731. doi: 10.1681/ASN.2010050562 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vinas JL, Sola A, Jung M, Mastora C, Vinuesa E, Pi F, Hotter G (2010) Inhibitory action of Wnt target gene osteopontin on mitochondrial cytochrome c release determines renal ischemic resistance. Am J Physiol Renal Physiol 299:F234–F242. doi: 10.1152/ajprenal.00687.2009 PubMedCrossRefGoogle Scholar
  31. 31.
    Zeilstra J, Joosten SP, Wensveen FM, Dessing MC, Schutze DM, Eldering E, Spaargaren M, Pals ST (2011) WNT signaling controls expression of pro-apoptotic BOK and BAX in intestinal cancer. Biochem Biophys Res Commun 406:1–6. doi: 10.1016/j.bbrc.2010.12.070 PubMedCrossRefGoogle Scholar
  32. 32.
    Pecina-Slaus N (2010) Wnt signal transduction pathway and apoptosis: a review. Cancer Cell Int 10:22. doi: 10.1186/1475-2867-10-22 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Turashvili G, Bouchal J, Burkadze G, Kolar Z (2006) Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213–223. doi: 10.1159/000098207 PubMedCrossRefGoogle Scholar
  34. 34.
    Lian M, Hewitson TD, Wigg B, Samuel CS, Chow F, Becker GJ (2012) Long-term mineralocorticoid receptor blockade ameliorates progression of experimental diabetic renal disease. Nephrol Dial Transplant 27:906–912. doi: 10.1093/ndt/gfr495 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dan Zhu
    • 1
  • Hongwei Yu
    • 2
  • Hongjiang He
    • 3
  • Jiuli Ding
    • 4
  • Jie Tang
    • 1
  • Dan Cao
    • 1
  • Lirong Hao
    • 1
    Email author
  1. 1.Department of NephrologyThe First Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
  2. 2.Department of BoneThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
  3. 3.Department of Head and Neck SurgeryThe Third Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
  4. 4.Department of RIA CenterHeilongjiang Province HospitalHeilongjiangChina

Personalised recommendations