Molecular and Cellular Biochemistry

, Volume 378, Issue 1–2, pp 73–81 | Cite as

Pre-protective effect of lipoic acid on injury induced by H2O2 in IPEC-J2 cells

  • Xuan Cai
  • Xiaolian Chen
  • Xiaochun Wang
  • Congcong Xu
  • Qi Guo
  • Lihui Zhu
  • Shuwen Zhu
  • Jianxiong Xu


Alpha-lipoic acid (LA) is considered to be a universal antioxidant. The intestine is very sensitive to a wide range of stressors for it exposed in a complex microenvironment that usually contained excess free radicals. The objective of this study was to evaluate the pre-protective effect of LA on intestinal epithelial cell injury induced by H2O2. In this research, IPEC-J2 cells were divided into three groups: the control group, the H2O2-treated group, and the LA pre-protective group. Cell viability, intracellular ROS, DNA damage integrity, and antioxidant enzyme activity of all groups were measured. Quantitative reverse transcription-PCR was used to determine the influence of oxidative stress and LA on the GH/IGF-1 axis in IPEC-J2 cells. The research selected 1 mM H2O2 and 10 μg/ml as modeling concentration. The data indicated that H2O2 can significantly increase the intracellular free radicals, leading to serious DNA damage and significantly reduce superoxide dismutase, glutathione peroxidase, catalase, and lipase activity. LA-protected IPEC-J2 cells against H2O2-induced injury by scavenging hydroxyl radical. In the current study, LA pre-protective group share a lower intracellular ROS and lower DNA damage compare to H2O2-treated group (P < 0.01); and also, a higher lipase activity were detected in LA pre-protective group compare to H2O2-treated group (P < 0.05). But the mechanism between oxidative stress, LA effect, and GH/IGF-1 axis is still unknown. The model used in the current study is also suitable for other feed additive screening.


Lipoic acid IPEC-J2 H2O2 Oxidative stress 


  1. 1.
    Zhu LH, Zhao KL, Chen XL, Xu JX (2012) Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J Anim Sci 90:2581–2589. doi:10.2527/jas.2011-4444 PubMedGoogle Scholar
  2. 2.
    Das SK, Vasudevan DM (2007) Alcohol-induced oxidative stress. Life Sci 81(3):177–187. doi:10.1016/j.lfs.2007.05.005 Google Scholar
  3. 3.
    Chen J, Zhou X-Q, Feng L, Liu Y, Jiang J (2009) Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian). Aquaculture 288(3–4):285–289. doi:10.1016/j.aquaculture.2008.10.053 CrossRefGoogle Scholar
  4. 4.
    Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta (BBA): Gen Subj 1790(10):1149–1160. doi:10.1016/j.bbagen.2009.07.026 Google Scholar
  5. 5.
    Cai X, Chen X, Yang F, Xu J, Gu J, Zhang C (2011) A preliminary research of antioxidant capacity by micro-derived antioxidants in vitro. Biotechnology 21(6):84–87. doi:10.3969/j.issn.1004-311X.2011.06.160 Google Scholar
  6. 6.
    Moini H, Packer L, Saris N-EL (2002) Antioxidant and prooxidant activities of α-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol 182(1):84–90. doi:10.1006/taap.2002.9437 PubMedCrossRefGoogle Scholar
  7. 7.
    Bai XM, Ma QG, Zhao LH, Xi L, Ji C (2011) Effects of alpha-lipoic acid supplementation on antioxidative ability and performance of sows and nursing piglets. J Anim Physiol Anim Nutr:1–7. doi:10.1111/j.1439-0396.2011.01205.x
  8. 8.
    Pederzolli C, Rosa A, de Oliveira A, Coelho J, da Luz Becker D, Dalazen G, Moraes T, Dutra-Filho C (2010) Neuroprotective role of lipoic acid against acute toxicity of N-acetylaspartic acid. Mol Cell Biochem 344(1):231–239. doi:10.1007/s11010-010-0547-x PubMedCrossRefGoogle Scholar
  9. 9.
    Jia L, Zhang Z, Zhai L, Bai Y (2009) Protective effect of lipoic acid against acrolein-induced cytotoxicity in IMR-90 human fibroblasts. J Nutr Sci Vitaminol 55(2):126–130. doi:10.3177/jnsv.55.126 PubMedCrossRefGoogle Scholar
  10. 10.
    Ma X, He P, Sun P, Han P (2010) Lipoic acid: an immunomodulator that attenuates glycinin-induced anaphylactic reactions in a rat model. J Agric Food Chem 58(8):5086–5092. doi:10.1021/jf904403u PubMedCrossRefGoogle Scholar
  11. 11.
    Langerholc T, Maragkoudakis PA, Wollgast J, Gradisnik L, Cencic A (2011) Novel and established intestinal cell line models-an indispensable tool in food science and nutrition. Trends Food Sci Technol 20:S11–S20. doi:10.1016/j.tifs.2011.03.010 CrossRefGoogle Scholar
  12. 12.
    Geens M, Niewold T (2011) Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization. Cytotechnology 63(4):415–423. doi:10.1007/s10616-011-9362-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Brosnahan AJ, Brown DR (2011) Porcine IPEC-J2 intestinal epithelial cells in microbiological investigations. Vet Microbiol 156:229–237. doi:10.1016/j.vetmic.2011.10.017 PubMedCrossRefGoogle Scholar
  14. 14.
    Liu Y, Fatheree NY, Mangalat N, Rhoads JM (2010) Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 299(5):G1087–G1096. doi:10.1152/ajpgi.00124.2010 PubMedCrossRefGoogle Scholar
  15. 15.
    Aperce C, Burkey TE, KuKanich B, Crozier-Dodson B, Dritz S, Minton J (2010) Interaction of Bacillus species and Salmonella enterica serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. J Anim Sci 88(5):1649–1656. doi:10.2527/jas.2009-2263 PubMedCrossRefGoogle Scholar
  16. 16.
    Diesing A-K, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, Rothkötter H-J, Kluess J (2011) Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One 6(2):e17472. doi:10.1371/journal.pone.0017472 PubMedCrossRefGoogle Scholar
  17. 17.
    Paszti-Gere E, Csibrik-Nemeth E, Szeker K, Csizinszky R, Jakab C, Galfi P (2011) Acute Oxidative Stress Affects IL-8 and TNF-α Expression in IPEC-J2 porcine epithelial cells. Inflammation :1–11. doi:10.1007/s10753-011-9403-8
  18. 18.
    Ardestani A, Yazdanparast R (2007) Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem 104(1):21–29. doi:10.1016/j.foodchem.2006.10.066 CrossRefGoogle Scholar
  19. 19.
    Zha R, Xu W, Wang W, Dong L, Wang Y (2007) Prevention of lipopolysaccharide-induced injury by 3, 5-dicaffeoylquinic acid in endothelial cells. Acta Pharmacol Sin 28(8):1143–1148. doi:10.1111/j.1745-7254.2007.00595.x PubMedCrossRefGoogle Scholar
  20. 20.
    Winterbourn C, Hawkins R, Brian M, Carrell R (1975) The estimation of red cell superoxide dismutase activity. J Lab Clin Med 85(2):337PubMedGoogle Scholar
  21. 21.
    Hafeman D, Sunde R, Hoekstra W (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104(5):580–587PubMedGoogle Scholar
  22. 22.
    Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196(2–3):143–151. doi:10.1016/0009-8981(91)90067-m PubMedCrossRefGoogle Scholar
  23. 23.
    Chueh WH, Lin JY (2011) Berberine, an isoquinoline alkaloid, inhibits streptozotocin-induced apoptosis in mouse pancreatic islets through down-regulating Bax/Bcl-2 gene expression ratio. Food Chem 132:252–260. doi:10.1016/j.foodchem.2011.10.065 CrossRefGoogle Scholar
  24. 24.
    Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19(2):227–250. doi:10.1016/0891-5849(95)00017-r PubMedCrossRefGoogle Scholar
  25. 25.
    Demmig-Adams B, Adams WW (2002) Antioxidants in photosynthesis and human nutrition. Science 298(5601):2149–2153. doi:10.1126/science.1078002 PubMedCrossRefGoogle Scholar
  26. 26.
    Scott BC, Aruoma OI, Evans PJ, O’Neill C, Van der Vliet A, Cross CE, Tritschler H, Halliwell B (1994) Lipoic and dihydrolipoic acids as antioxidants. A critical evaluation. Free Radic Res 20(2):119–133PubMedCrossRefGoogle Scholar
  27. 27.
    Nordberg J, Arnér ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312. doi:10.1016/s0891-5849(01)00724-9 PubMedCrossRefGoogle Scholar
  28. 28.
    Németh E, Halász A, Baráth Á, Domokos M, Gálfi P (2007) Effect of hydrogen peroxide on interleukin-8 synthesis and death of Caco-2 cells. Immunopharmacol Immunotoxicol 29(2):297–310. doi:10.1080/08923970701513443 PubMedCrossRefGoogle Scholar
  29. 29.
    Shoji H, Oguchi S, Fujinaga S, Shinohara K, Kaneko K, Shimizu T, Yamashiro Y (2005) Effects of human milk and spermine on hydrogen peroxide-induced oxidative damage in IEC-6 cells. J Pediatr Gastroenterol Nutr 41(4):460–465PubMedCrossRefGoogle Scholar
  30. 30.
    Lewis K, Lutgendorff F, Phan V, Söderholm JD, Sherman PM, McKay DM (2010) Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis 16(7):1138–1148. doi:10.1002/ibd.21177 PubMedCrossRefGoogle Scholar
  31. 31.
    Galang N, Sasaki H, Maulik N (2000) Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy. Toxicology 148(2–3):111–118. doi:10.1016/s0300-483x(00)00201-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen G, Hochstein P (1963) Glutathione peroxidase: the Primary agent for the elimination of hydrogen peroxide in erythrocytes. Biochemistry 2(6):1420–1428. doi:10.1021/bi00906a038 PubMedCrossRefGoogle Scholar
  33. 33.
    Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C (2009) The molecular mechanism of the catalase reaction. J Am Chem Soc 131(33):11751–11761. doi:10.1021/ja9018572 PubMedCrossRefGoogle Scholar
  34. 34.
    Halici M, Imik H, Koç M, Gümüş R (2012) Effects of α-lipoic acid, vitamins E and C upon the heat stress in Japanese quails. J Anim Physiol Anim Nutr 96(3):408–415. doi:10.1111/j.1439-0396.2011.01156.x CrossRefGoogle Scholar
  35. 35.
    Kaur G, Alam MS, Jabbar Z, Javed K, Athar M (2006) Evaluation of antioxidant activity of Cassia siamea flowers. J Ethnopharmacol 108(3):340–348. doi:10.1016/j.jep.2006.05.021 PubMedCrossRefGoogle Scholar
  36. 36.
    Singh H, Ye A, Horne D (2009) Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48(2):92–100. doi:10.1016/j.plipres.2008.12.001 PubMedCrossRefGoogle Scholar
  37. 37.
    Theiss AL, Fruchtman S, Lund PK (2004) Growth factors in inflammatory bowel disease. The actions and interactions of growth hormone and insulin-like growth factor-I. Inflamm Bowel Dis 10(6):871–880. doi:10.1097/00054725-200411000-00021 PubMedCrossRefGoogle Scholar
  38. 38.
    Kalbe C, Mau M, Rehfeldt C (2008) Developmental changes and the impact of isoflavones on mRNA expression of IGF-I receptor, EGF receptor and related growth factors in porcine skeletal muscle cell cultures. Growth Horm IGF Res 18(5):424–433. doi:10.1016/j.ghir.2008.03.002 PubMedCrossRefGoogle Scholar
  39. 39.
    Lunney JK (2007) Advances in swine biomedical model genomics. Int J Biol Sci 3(3):179PubMedCrossRefGoogle Scholar
  40. 40.
    Chen Q (2007) Oxidative stress in the animal digestive tract structure and function of the impact. Jiangnan University, WuxiGoogle Scholar
  41. 41.
    Li X, Yin J, Li D, Chen X, Zang J, Zhou X (2006) Dietary supplementation with zinc oxide increases IGF-I and IGF-I receptor gene expression in the small intestine of weanling piglets. J Nutr 136(7):1786–1791PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xuan Cai
    • 1
    • 2
  • Xiaolian Chen
    • 1
    • 3
  • Xiaochun Wang
    • 1
    • 2
  • Congcong Xu
    • 1
    • 2
  • Qi Guo
    • 1
    • 2
  • Lihui Zhu
    • 1
    • 2
  • Shuwen Zhu
    • 1
    • 2
  • Jianxiong Xu
    • 1
    • 2
  1. 1.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory for Veterinary and BiotechnologyShanghaiChina
  3. 3.Institute of Husbandry and VeterinaryJiangxi Academy of Agricultural ScienceNanchangChina

Personalised recommendations