Molecular and Cellular Biochemistry

, Volume 376, Issue 1–2, pp 121–135 | Cite as

Malondialdehyde and 4-hydroxynonenal adducts are not formed on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in diabetes

  • Caronda J. Moore
  • Chun Hong Shao
  • Ryoji Nagai
  • Shelby Kutty
  • Jaipaul Singh
  • Keshore R. Bidasee


Recently, we reported an elevated level of glucose-generated carbonyl adducts on cardiac ryanodine receptor (RyR2) and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) in hearts of streptozotocin(STZ)-induced diabetic rats. We also showed these adduct impaired RyR2 and SERCA2 activities, and altered evoked Ca2+ transients. What is less clear is if lipid-derived malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) also chemically react with and impair RyR2 and SERCA2 activities in diabetes? This study used western blot assays with adduct-specific antibodies and confocal microscopy to assess levels of MDA, 4-HNE, Nε-carboxy(methyl)lysine (CML), pentosidine, and pyrraline adducts on RyR2 and SERCA2 and evoked intracellular transient Ca2+ kinetics in myocytes from control, diabetic, and treated-diabetic rats. MDA and 4-HNE adducts were not detected on RyR2 and SERCA2 from either control or 8 weeks diabetic rats with altered evoked Ca2+ transients. However, CML, pentosidine, and pyrraline adducts were elevated three- to five-fold (p < 0.05). Treating diabetic rats with pyridoxamine (a scavenger of reactive carbonyl species, RCS) or aminoguanidine (a mixed reactive oxygen species-RCS scavenger) reduced CML, pentosidine, and pyrraline adducts on RyR2 and SERCA2 and blunted SR Ca2+ cycling changes. Treating diabetic rats with the superoxide dismutase mimetic tempol had no impact on MDA and 4-HNE adducts on RyR2 and SERCA2, and on SR Ca2+ cycling. From these data we conclude that lipid-derived MDA and 4-HNE adducts are not formed on RyR2 and SERCA2 in this model of diabetes, and are therefore unlikely to be directly contributing to the SR Ca2+ dysregulation.


Diabetes mellitus Rats Malondialdehyde 4-Hydroxynonenal Post-translational modifications Type 2 ryanodine receptor Sarco(endo)plasmic reticulum Ca2+-ATPase 



The authors thank Janice A. Taylor and James R. Talaska of the Confocal Laser Scanning Microscope Core Facility at the University of Nebraska Medical Center for providing assistance with confocal microscopy. This work was supported in part by grants from the Edna Ittner Research Foundation, American Diabetes Association [1-06-RA-11] and the National Institutes of Health [HL085061].


  1. 1.
    American Diabetes A (2008) Economic costs of diabetes in the U.S. in 2007. Diabetes Care 31:596–615. doi:10.2337/dc08-9017 CrossRefGoogle Scholar
  2. 2.
    Giorda CB, Manicardi V, Diago Cabezudo J (2011) The impact of diabetes mellitus on healthcare costs in Italy. Expert Rev Pharmacoecon Outcomes Res 11:709–719. doi:10.1586/erp.11.78 PubMedCrossRefGoogle Scholar
  3. 3.
    Nosadini R, Tonolo G (2002) Cardiovascular and renal protection in type 2 diabetes mellitus: the role of calcium channel blockers. J Am Soc Nephrol 13(Suppl 3):S216–S223PubMedCrossRefGoogle Scholar
  4. 4.
    Battiprolu PK, Gillette TG, Wang ZV, Lavandero S, Hill JA (2010) Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech 7:e135–e143. doi:10.1016/j.ddmec.2010.08.001 PubMedCrossRefGoogle Scholar
  5. 5.
    Thandavarayan RA, Giridharan VV, Watanabe K, Konishi T (2011) Diabetic cardiomyopathy and oxidative stress: role of antioxidants. Cardiovasc Hematol Agents Med Chem 9(4):225–230Google Scholar
  6. 6.
    Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39. doi:10.1007/s11154-010-9131-7 PubMedCrossRefGoogle Scholar
  7. 7.
    Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813:1351–1359. doi:10.1016/j.bbamcr.2011.01.014 PubMedCrossRefGoogle Scholar
  8. 8.
    D’Souza A, Howarth FC, Yanni J, Dobryznski H, Boyett MR, Adeghate E, Bidasee KR, Singh J (2011) Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 96:875–888. doi:10.1113/expphysiol.2011.058271 PubMedGoogle Scholar
  9. 9.
    Shao C, Tian C, Ouyang S, Moore C, Alomar F, Nemet I, D’Souza A, Nagai R, Kutty S, Rozanski GJ, Ramanadham S, Singh J, Bidasee K (2012) Carbonylation induces heterogeneity in cardiac ryanodine receptors (RyR2) function during diabetes. Mol Pharmacol 82(3):383–399. doi:10.1124/mol.112.078352 PubMedCrossRefGoogle Scholar
  10. 10.
    Shao CH, Capek HL, Patel KP, Wang M, Tang K, DeSouza C, Nagai R, Mayhan W, Periasamy M, Bidasee KR (2011) Carbonylation contributes to SERCA2a activity loss and diastolic dysfunction in a rat model of type 1 diabetes. Diabetes 60:947–959. doi:10.2337/db10-1145 PubMedCrossRefGoogle Scholar
  11. 11.
    Taha M, Lopaschuk GD (2007) Alterations in energy metabolism in cardiomyopathies. Ann Med 39:594–607. doi:10.1080/07853890701618305 PubMedCrossRefGoogle Scholar
  12. 12.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223. doi:10.1161/CIRCULATIONAHA.106.679597 PubMedCrossRefGoogle Scholar
  13. 13.
    Stanley WC, Lopaschuk GD, McCormack JG (1997) Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res 34:25–33PubMedCrossRefGoogle Scholar
  14. 14.
    Kota SK, Kota SK, Jammula S, Panda S, Modi KD (2011) Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications. Diabetes Technol Ther 13:1155–1160. doi:10.1089/dia.2011.0120 PubMedCrossRefGoogle Scholar
  15. 15.
    Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res 82:351–360. doi:10.1093/cvr/cvp017 PubMedCrossRefGoogle Scholar
  16. 16.
    Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31:2741–2748. doi:10.1093/eurheartj/ehq396 PubMedCrossRefGoogle Scholar
  17. 17.
    Tousoulis D, Briasoulis A, Papageorgiou N, Tsioufis C, Tsiamis E, Toutouzas K, Stefanadis C (2011) Oxidative stress and endothelial function: therapeutic interventions. Recent Pat Cardiovasc Drug Discov 6:103–114PubMedCrossRefGoogle Scholar
  18. 18.
    Marjani A (2010) Lipid peroxidation alterations in type 2 diabetic patients. Pak J Biol Sci 13:723–730PubMedCrossRefGoogle Scholar
  19. 19.
    Piconi L, Quagliaro L, Ceriello A (2003) Oxidative stress in diabetes. Clin Chem Lab Med 41:1144–1149. doi:10.1515/CCLM.2003.177 PubMedCrossRefGoogle Scholar
  20. 20.
    Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696PubMedCrossRefGoogle Scholar
  21. 21.
    Basu S (2004) Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic Res 38:105–122PubMedCrossRefGoogle Scholar
  22. 22.
    Dirkx E, Schwenk RW, Glatz JF, Luiken JJ, van Eys GJ (2011) High fat diet induced diabetic cardiomyopathy. Prostaglandins Leukot Essent Fatty Acids 85:219–225. doi:10.1016/j.plefa.2011.04.018 PubMedCrossRefGoogle Scholar
  23. 23.
    Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 43:550–557. doi:10.1007/s001250051342 PubMedCrossRefGoogle Scholar
  24. 24.
    Voulgaridou GP, Anestopoulos I, Franco R, Panayiotidis MI, Pappa A (2011) DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat Res 711:13–27. doi:10.1016/j.mrfmmm.2011.03.006 PubMedCrossRefGoogle Scholar
  25. 25.
    Shao CH, Rozanski GJ, Patel KP, Bidasee KR (2007) Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J Mol Cell Cardiol 42:234–246. doi:10.1016/j.yjmcc.2006.08.018 PubMedCrossRefGoogle Scholar
  26. 26.
    Troncoso Brindeiro CM, Lane PH, Carmines PK (2012) Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney. Hypertension 59:657–664. doi:10.1161/HYPERTENSIONAHA.111.184218 PubMedCrossRefGoogle Scholar
  27. 27.
    Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145. doi:10.1016/j.pharmthera.2010.01.003 PubMedCrossRefGoogle Scholar
  28. 28.
    Shao CH, Rozanski GJ, Nagai R, Stockdale FE, Patel KP, Wang M, Singh J, Mayhan WG, Bidasee KR (2010) Carbonylation of myosin heavy chains in rat heart during diabetes. Biochem Pharmacol 80:205–217. doi:10.1016/j.bcp.2010.03.024 PubMedCrossRefGoogle Scholar
  29. 29.
    Dai S, Fraser H, Yuen VG, McNeill JH (1994) Improvement in cardiac function in streptozotocin-diabetic rats by salt loading. Can J Physiol Pharmacol 72:1288–1293PubMedCrossRefGoogle Scholar
  30. 30.
    Shao CH, Wehrens XH, Wyatt TA, Parbhu S, Rozanski GJ, Patel KP, Bidasee KR (2009) Exercise training during diabetes attenuates cardiac ryanodine receptor dysregulation. J Appl Physiol 106:1280–1292. doi:10.1152/japplphysiol.91280.2008 PubMedCrossRefGoogle Scholar
  31. 31.
    Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr (2004) Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 27:699–703PubMedCrossRefGoogle Scholar
  32. 32.
    Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283:H1398–H1408. doi:10.1152/ajpheart.00313.2002 PubMedGoogle Scholar
  33. 33.
    Belke DD, Dillmann WH (2004) Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 6:424–429PubMedCrossRefGoogle Scholar
  34. 34.
    Bidasee KR, Dincer UD, Besch HR Jr (2001) Ryanodine receptor dysfunction in hearts of streptozotocin-induced diabetic rats. Mol Pharmacol 60:1356–1364PubMedGoogle Scholar
  35. 35.
    Ferrington DA, Krainev AG, Bigelow DJ (1998) Altered turnover of calcium regulatory proteins of the sarcoplasmic reticulum in aged skeletal muscle. J Biol Chem 273:5885–5891PubMedCrossRefGoogle Scholar
  36. 36.
    Bidasee KR, Nallani K, Besch HR Jr, Dincer UD (2003) Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther 305:989–998. doi:10.1124/jpet.102.046201 PubMedCrossRefGoogle Scholar
  37. 37.
    Shah G, Pinnas JL, Lung CC, Mahmoud S, Mooradian AD (1994) Tissue-specific distribution of malondialdehyde modified proteins in diabetes mellitus. Life Sci 55:1343–1349PubMedCrossRefGoogle Scholar
  38. 38.
    Minamiyama Y, Bito Y, Takemura S, Takahashi Y, Kodai S, Mizuguchi S, Nishikawa Y, Suehiro S, Okada S (2007) Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in type II diabetic rats. J Pharmacol Exp Ther 320:535–543. doi:10.1124/jpet.106.110460 PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Y, Babcock SA, Hu N, Maris JR, Wang H, Ren J (2012) Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3beta and mitochondrial function. BMC Med 10:40. doi:10.1186/1741-7015-10-40 PubMedCrossRefGoogle Scholar
  40. 40.
    Agadjanyan ZS, Dmitriev LF, Dugin SF (2005) A new role of phosphoglucose isomerase. Involvement of the glycolytic enzyme in aldehyde metabolism. Biochemistry (Mosc) 70:1251–1255CrossRefGoogle Scholar
  41. 41.
    Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11PubMedGoogle Scholar
  42. 42.
    Iwata K, Nishinaka T, Matsuno K, Kakehi T, Katsuyama M, Ibi M, Yabe-Nishimura C (2007) The activity of aldose reductase is elevated in diabetic mouse heart. J Pharmacol Sci 103:408–416PubMedCrossRefGoogle Scholar
  43. 43.
    Choudhary S, Xiao T, Srivastava S, Zhang W, Chan LL, Vergara LA, Van Kuijk FJ, Ansari NH (2005) Toxicity and detoxification of lipid-derived aldehydes in cultured retinal pigmented epithelial cells. Toxicol Appl Pharmacol 204:122–134. doi:10.1016/j.taap.2004.08.023 PubMedCrossRefGoogle Scholar
  44. 44.
    Shi Z, Chen AD, Xu Y, Chen Q, Gao XY, Wang W, Zhu GQ (2009) Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 458:247–257. doi:10.1007/s00424-008-0627-x PubMedCrossRefGoogle Scholar
  45. 45.
    Matsumoto K, Krishna MC, Mitchell JB (2004) Novel pharmacokinetic measurement using electron paramagnetic resonance spectroscopy and simulation of in vivo decay of various nitroxyl spin probes in mouse blood. J Pharmacol Exp Ther 310:1076–1083. doi:10.1124/jpet.104.066647 PubMedCrossRefGoogle Scholar
  46. 46.
    Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92:e80–e86. doi:10.1161/01.RES.0000077044.60138.7C PubMedCrossRefGoogle Scholar
  47. 47.
    Zhao W, Zhao T, Chen Y, Ahokas RA, Sun Y (2008) Oxidative stress mediates cardiac fibrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem 317:43–50. doi:10.1007/s11010-008-9803-8 PubMedCrossRefGoogle Scholar
  48. 48.
    Voziyan PA, Hudson BG (2005) Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann N Y Acad Sci 1043:807–816. doi:10.1196/annals.1333.093 PubMedCrossRefGoogle Scholar
  49. 49.
    Thornalley PJ (2003) Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 419:31–40PubMedCrossRefGoogle Scholar
  50. 50.
    Sansbury BE, Riggs DW, Brainard RE, Salabei JK, Jones SP, Hill BG (2011) Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochem J 435:519–528. doi:10.1042/BJ20101390 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Caronda J. Moore
    • 1
  • Chun Hong Shao
    • 1
  • Ryoji Nagai
    • 2
  • Shelby Kutty
    • 3
  • Jaipaul Singh
    • 4
  • Keshore R. Bidasee
    • 1
    • 5
    • 6
  1. 1.Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical CenterDurham Research CenterOmahaUSA
  2. 2.Laboratory of Food and Regulation Biology, Department of Biosciences, School of AgricultureTokai UniversityTokyoJapan
  3. 3.Joint Division of Pediatric CardiologyUniversity of Nebraska/Creighton University and Children’s Hospital and Medical CenterOmahaUSA
  4. 4.School of Forensic and Investigative Sciences and School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  5. 5.Environmental, Agricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaUSA
  6. 6.N146 Beadle CenterNebraska Center for Redox BiologyLincolnUSA

Personalised recommendations