Molecular and Cellular Biochemistry

, Volume 375, Issue 1–2, pp 207–217 | Cite as

Matriptase-2 inhibits HECV motility and tubule formation in vitro and tumour angiogenesis in vivo

  • Siobhan L. Webb
  • Andrew J. Sanders
  • Malcolm D. Mason
  • Wen G. JiangEmail author


The type II transmembrane serine proteases (TTSP) are cell surface proteolytic enzymes that mediate a diverse range of cellular functions, including tumour invasion and metastasis. Matriptase-2 is a member of the TTSP family and has been shown to have a key role in cancer progression. The role of matriptase-2 in angiogenesis and angiogenesis-related cancer progression is currently poorly understood. This study aims to elucidate the role of matriptase-2 in tumour angiogenesis. Matriptase-2 was over-expressed in human vascular endothelial cells, HECV, using a mammalian expression plasmid. The altered cells were used in a number of in vitro and in vivo assays designed to investigate the involvement of matriptase-2 in angiogenesis. Over-expression had no significant effect on the growth and adhesion of HECV cells. However, there was a significant reduction in the motility of the cells and their ability to form tubules in an artificial basement membrane (p < 0.01 for both). HECVmat2 exp cells inoculated into CD-1 athymic mice along with either PC-3 prostate cancer cells or MDA-MB-231 breast cancer cells showed a dramatic decrease in tumour development and growth in the prostate tumours (p < 0.01) and a lesser, non-significant, decrease in the breast tumours (p = 0.08). Over-expression of matriptase-2 also decreased urokinase type plasminogen activator total protein levels in HECV and prostate cells. The study concludes that matriptase-2 has the ability to suppress the angiogenic nature of HECV cells in vitro and in vivo. It also suggests that matriptase-2 could have a potential role in prostate and breast tumour suppression through its anti-angiogenic properties.


Matriptase-2 TTSP Angiogenesis Prostate cancer uPA 



The authors wish to thank Cancer Research Wales for supporting this study.


  1. 1.
    Lang JC, Schuller DE (2001) Differential expression of a novel serine protease homologue in squamous cell carcinoma of the head and neck. Br J Cancer 84(2):237–243. doi: 10.1054/bjoc.2000.1586S0007092000915866 PubMedCrossRefGoogle Scholar
  2. 2.
    Lee JW, Yong Song S, Choi JJ, Lee SJ, Kim BG, Park CS, Lee JH, Lin CY, Dickson RB, Bae DS (2005) Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol 36(6):626–633. doi: 10.1016/j.humpath.2005.03.003 PubMedCrossRefGoogle Scholar
  3. 3.
    Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA, Catalona WJ, Watson MA, Milbrandt J (2001) Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61(15):5692–5696PubMedGoogle Scholar
  4. 4.
    Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH, Antalis TM (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22(2–3):237–258PubMedCrossRefGoogle Scholar
  5. 5.
    Wallrapp C, Hahnel S, Muller-Pillasch F, Burghardt B, Iwamura T, Ruthenburger M, Lerch MM, Adler G, Gress TM (2000) A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res 60(10):2602–2606PubMedGoogle Scholar
  6. 6.
    Velasco G, Cal S, Quesada V, Sanchez LM, Lopez-Otin C (2002) Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem 277(40):37637–37646. doi: 10.1074/jbc.M203007200 PubMedCrossRefGoogle Scholar
  7. 7.
    Hooper JD, Campagnolo L, Goodarzi G, Truong TN, Stuhlmann H, Quigley JP (2003) Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues. Biochem J 373(Pt 3):689–702. doi: 10.1042/BJ20030390 PubMedCrossRefGoogle Scholar
  8. 8.
    Szabo R, Bugge TH (2008) Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40(6–7):1297–1316. doi: 10.1016/j.biocel.2007.11.013 PubMedCrossRefGoogle Scholar
  9. 9.
    Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB (1993) Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53(6):1409–1415PubMedGoogle Scholar
  10. 10.
    Tsai WC, Chu CH, Yu CP, Sheu LF, Chen A, Chiang H, Jin JS (2008) Matriptase and survivin expression associated with tumor progression and malignant potential in breast cancer of Chinese women: tissue microarray analysis of immunostaining scores with clinicopathological parameters. Dis Markers 24(2):89–99PubMedGoogle Scholar
  11. 11.
    Uhland K (2006) Matriptase and its putative role in cancer. Cell Mol Life Sci 63(24):2968–2978. doi: 10.1007/s00018-006-6298-x PubMedCrossRefGoogle Scholar
  12. 12.
    Parr C, Sanders AJ, Davies G, Martin T, Lane J, Mason MD, Mansel RE, Jiang WG (2007) Matriptase-2 inhibits breast tumor growth and invasion and correlates with favorable prognosis for breast cancer patients. Clin Cancer Res 13(12):3568–3576. doi: 10.1158/1078-0432.CCR-06-2357 PubMedCrossRefGoogle Scholar
  13. 13.
    Sanders AJ, Parr C, Martin TA, Lane J, Mason MD, Jiang WG (2008) Genetic upregulation of matriptase-2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation. J Cell Physiol 216(3):780–789. doi: 10.1002/jcp.21460 PubMedCrossRefGoogle Scholar
  14. 14.
    Odet F, Verot A, Le Magueresse-Battistoni B (2006) The mouse testis is the source of various serine proteases and serine proteinase inhibitors (SERPINs): serine proteases and SERPINs identified in Leydig cells are under gonadotropin regulation. Endocrinology 147(9):4374–4383. doi: 10.1210/en.2006-0484 PubMedCrossRefGoogle Scholar
  15. 15.
    Overall CM, Tam EM, Kappelhoff R, Connor A, Ewart T, Morrison CJ, Puente X, Lopez-Otin C, Seth A (2004) Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biol Chem 385(6):493–504. doi: 10.1515/BC.2004.058 PubMedCrossRefGoogle Scholar
  16. 16.
    Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, Khovananth K, Mudd S, Mann N, Moresco EM, Beutler E, Beutler B (2008) The serine protease TMPRSS6 is required to sense iron deficiency. Science 320(5879):1088–1092. doi: 10.1126/science.1157121 PubMedCrossRefGoogle Scholar
  17. 17.
    Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 8(6):502–511. doi: 10.1016/j.cmet.2008.09.012 PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang WG, Hiscox S, Hallett MB, Horrobin DF, Mansel RE, Puntis MC (1995) Regulation of the expression of E-cadherin on human cancer cells by gamma-linolenic acid (GLA). Cancer Res 55(21):5043–5048PubMedGoogle Scholar
  19. 19.
    Parr C, Jiang WG (2006) Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 119(5):1176–1183. doi: 10.1002/ijc.21881 PubMedCrossRefGoogle Scholar
  20. 20.
    Webb SL, Sanders AJ, Mason MD, Jiang WG (2012) The influence of matriptase-2 on prostate cancer in vitro: a possible role for beta-catenin. Oncol Rep 28(4):1491–1497. doi: 10.3892/or.2012.1945 PubMedGoogle Scholar
  21. 21.
    Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 10(1 Pt 1):202–211PubMedCrossRefGoogle Scholar
  22. 22.
    Jiang WG, Hiscox S, Hallett MB, Scott C, Horrobin DF, Puntis MC (1995) Inhibition of hepatocyte growth factor-induced motility and in vitro invasion of human colon cancer cells by gamma-linolenic acid. Br J Cancer 71(4):744–752PubMedCrossRefGoogle Scholar
  23. 23.
    Martin TA, Parr C, Davies G, Watkins G, Lane J, Matsumoto K, Nakamura T, Mansel RE, Jiang WG (2003) Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis 24(8):1317–1323. doi: 10.1093/carcin/bgg072bgg072 PubMedCrossRefGoogle Scholar
  24. 24.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi: 10.1038/35025220 PubMedCrossRefGoogle Scholar
  25. 25.
    Pepper MS (2001) Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21(7):1104–1117PubMedCrossRefGoogle Scholar
  26. 26.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174. doi: 10.1038/nrc745 PubMedCrossRefGoogle Scholar
  27. 27.
    McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100(4):1160–1167PubMedGoogle Scholar
  28. 28.
    Rifkin DB, Mazzieri R, Munger JS, Noguera I, Sung J (1999) Proteolytic control of growth factor availability. APMIS 107(1):80–85PubMedCrossRefGoogle Scholar
  29. 29.
    Aimes RT, Zijlstra A, Hooper JD, Ogbourne SM, Sit ML, Fuchs S, Gotley DC, Quigley JP, Antalis TM (2003) Endothelial cell serine proteases expressed during vascular morphogenesis and angiogenesis. Thromb Haemost 89(3):561–572. doi: 10.1267/THRO03030561 PubMedGoogle Scholar
  30. 30.
    Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS (2000) Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275(34):26333–26342. doi: 10.1074/jbc.M002941200 PubMedCrossRefGoogle Scholar
  31. 31.
    Bajou K, Devy L, Masson V, Albert V, Frankenne F, Noel A, Foidart JM (2001) Role of plasminogen activator inhibitor type 1 in tumor angiogenesis. Therapie 56(5):465–472PubMedGoogle Scholar
  32. 32.
    Morrissey C, True LD, Roudier MP, Coleman IM, Hawley S, Nelson PS, Coleman R, Wang YC, Corey E, Lange PH, Higano CS, Vessella RL (2008) Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases. Clin Exp Metastasis 25(4):377–388. doi: 10.1007/s10585-007-9116-4 PubMedCrossRefGoogle Scholar
  33. 33.
    Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM (2004) Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 57(6):577–584PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Siobhan L. Webb
    • 1
  • Andrew J. Sanders
    • 1
  • Malcolm D. Mason
    • 1
  • Wen G. Jiang
    • 1
    Email author
  1. 1.Metastasis & Angiogenesis Research Group, Institute of Cancer and GeneticsCardiff University School of MedicineCardiffUK

Personalised recommendations