Molecular and Cellular Biochemistry

, Volume 375, Issue 1–2, pp 11–21

Transforming growth factor-β1 induces matrix metalloproteinase-9 expression in rat vascular smooth muscle cells via ROS-dependent ERK–NF-κB pathways

  • Hao Zhang
  • Zhi-Wei Wang
  • Hong-Bing Wu
  • Zhi Li
  • Luo-Cheng Li
  • Xiao-Ping Hu
  • Zong-Li Ren
  • Bai-Jun Li
  • Zhi-Peng Hu


Both matrix metalloproteinase-9 (MMP9) and transforming growth factors-β1 (TGF-β1) are the important factors in the pathogenesis of the aortic aneurysm (AA) and aortic dissection (AD). Recent studies have shown that inhibition of reactive oxygen species (ROS) production, extracellular signal–regulated kinase 1/2(ERK1/2) or NF-κB pathways is able to suppress aneurysm formation. The median layers of arterial walls are mainly the vascular smooth muscle cells (VSMCs), while the pathogenesis of AA and AD is closely related to the changes in the median layer structure. Thus, we investigated the molecular mechanisms underlying TGF-β1-induced MMP-9 expression in VSMC, the involvement of intracellular ROS and signaling molecules, including ERK1/2 and NF-κB. Rat vascular smooth muscle cells (A7r5) were used. MMP-9 expression was analyzed by gelatin zymography, western blot and RT-PCR. The involvement of intracellular ROS and signaling molecules including ERK1/2 and NF-κB in the responses was investigated using reactive oxygen scavenger N-acetylcysteine (NAC) and pharmacological inhibitors (U0126 and BAY11-7082), determined by ROS testing and western blot testing for their corresponding proteins. TGF-β1 induces MMP-9 expression via ROS-dependent signaling pathway. ROS production leads to activation of ERK1/2 and then activation of the NF-κB transcription factor. Activated NF-κB turns on transcription of the MMP-9 gene. The process in which TGF-β1 induces MMP9 expression involves the ROS-dependent ERK–NF-κB signal pathways in VSMC. This discovery raises a new regulation pathway in the VSMC, and it shows the potential to help to find a new solution to treating aortic aneurysm and aortic dissection.




  1. 1.
    Borges LF, Touat Z, Leclercq A, Zen AA, Jondeau’ G, Franc B, Philippe M, Meilhac O, Gutierrez PS, Michel JB (2009) Tissue diffusion and retention of metalloproteinases in ascending aortic aneurysms and dissections. Hum Pathol 40:306–313PubMedGoogle Scholar
  2. 2.
    Allaire E, Schneider F, Saucy F, Dai J, Cochennec F, Michineau S, Zidi M, Becquemin JP, Kirsch M, Gervais M (2009) New insight in aetiopathogenesis of aortic diseases. Eur J Vasc Endovasc Surg 37:531–537PubMedGoogle Scholar
  3. 3.
    Wilson WR, Anderton M, Schwalbe EC, Jones JL, Furness PN, Bell PR, Thompson MM (2006) Matrix metalloproteinase-8 and -9 are increased at the site of abdominal aortic aneurysm rupture. Circulation 113:438–445PubMedGoogle Scholar
  4. 4.
    ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869PubMedGoogle Scholar
  5. 5.
    Goumans MJ, Liu Z, ten DP (2009) TGF-beta signaling in vascular biology and dysfunction. Cell Res 19:116–127PubMedGoogle Scholar
  6. 6.
    Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411PubMedGoogle Scholar
  7. 7.
    Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358:2787–2795PubMedGoogle Scholar
  8. 8.
    Habashi JP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121PubMedGoogle Scholar
  9. 9.
    Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358–361PubMedGoogle Scholar
  10. 10.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108:2034–2040PubMedGoogle Scholar
  11. 11.
    Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081PubMedGoogle Scholar
  12. 12.
    Yoshimura K, Aoki H, Ikeda Y, Fujii K, Akiyama N, Furutani A, Hoshii Y, Tanaka N, Ricci R, Ishihara T, Esato K, Hamano K, Matsuzaki M (2005) Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 11:1330–1338PubMedGoogle Scholar
  13. 13.
    Sun J, Sukhova GK, Wolters PJ, Yang M, Kitamoto S, Libby P, MacFarlane LA, Mallen-St Clair J, Shi GP (2007) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724PubMedGoogle Scholar
  14. 14.
    Thomas M, Gavrila D, McCormick ML, Miller FJ Jr, Daugherty A, Cassis LA, Dellsperger KC, Weintraub NL (2006) Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysmformation in apolipoprotein E-deficient mice. Circulation 114:404–413PubMedGoogle Scholar
  15. 15.
    Gavazzi G, Deffert C, Trocme C, Schappi M, Herrmann FR, Krause KH (2007) NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50:189–196PubMedGoogle Scholar
  16. 16.
    Chung AW, Yang HH, Radomski MW, van BC (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102:e73–e85PubMedGoogle Scholar
  17. 17.
    Clempus RE, Griendling KK (2006) Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res 71:216–225PubMedGoogle Scholar
  18. 18.
    Ghosh A, Dimusto PD, Ehrlichman LK, Sadiq O, McEvoy B, Futchko JS, Henke PK, Eliason JL, Upchurch GR Jr (2012) The role of extracellular signal-related kinase during abdominal aortic aneurysm formation. J Am Coll Surg 215(5):668–680PubMedGoogle Scholar
  19. 19.
    Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC (2011) Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332:361–365PubMedGoogle Scholar
  20. 20.
    Mi T, Nie B, Zhang C, Zhou H (2011) The elevated expression of osteopontin and NF-kappaB in human aortic aneurysms and its implication. J Huazhong Univ Sci Technol Med Sci 31:602–607PubMedGoogle Scholar
  21. 21.
    Nakashima H, Aoki M, Miyake T, Kawasaki T, Iwai M, Jo N, Oishi M, Kataoka K, Ohgi S, Ogihara T, Kaneda Y, Morishita R (2004) Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoyoligodeoxynucleotides suppressing activity of nuclear factor kappaB and etstranscription factors. Circulation 109:132–138PubMedGoogle Scholar
  22. 22.
    Sun L, Diamond ME, Ottaviano AJ, Joseph MJ, Ananthanarayan V, Munshi HG (2008) Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res 6:10–20PubMedGoogle Scholar
  23. 23.
    Okamoto T, Takahashi S, Nakamura E, Nagaya K, Hayashi T, Fujieda K (2009) Transforming growth factor-beta1 induces matrix metalloproteinase-9 expression in human meningeal cells via ERK and Smad pathways. Biochem Biophys Res Commun 383:475–479PubMedGoogle Scholar
  24. 24.
    Ishikawa F, Miyoshi H, Nose K, Shibanuma M (2010) Transcriptional induction of MMP-10 by TGF-beta, mediated by activation of MEF2A and downregulation of class IIa HDACs. Oncogene 29:909–919PubMedGoogle Scholar
  25. 25.
    Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH III, Spinale FG, Gorman RC (2006) Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 114:I365–I370PubMedGoogle Scholar
  26. 26.
    Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, Roberts AE, Faravelli F, Greco MA, Pyeritz RE, Milewicz DM, Coucke PJ, Cameron DE, Braverman AC, Byers PH, De Paepe AM, Dietz HC (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798PubMedGoogle Scholar
  27. 27.
    Wang X, LeMaire SA, Chen L, Shen YH, Gan Y, Bartsch H, Carter SA, Utama B, Ou H, Coselli JS, Wang XL (2006) Increased collagen deposition and elevated expression of connective tissue growth factor in human thoracic aortic dissection. Circulation 114:I200–I205PubMedGoogle Scholar
  28. 28.
    Grond-Ginsbach C, Pjontek R, Aksay SS, Hyhlik-Durr A, Bockler D, Gross-Weissmann ML (2010) Spontaneous arterial dissection: phenotype and molecular pathogenesis. Cell Mol Life Sci 67:1799–1815PubMedGoogle Scholar
  29. 29.
    Lesauskaite V, Tanganelli P, Sassi C, Neri E, Diciolla F, Ivanoviene L, Epistolato MC, Lalinga AV, Alessandrini C, Spina D (2001) Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum Pathol 32:1003–1011PubMedGoogle Scholar
  30. 30.
    Zhang Q, Huang JH, Xia RP, Duan XH, Jiang YB, Jiang Q, Sun WJ (2011) Suppression of experimental abdominal aortic aneurysm in a rat model by the phosphodiesterase 3 inhibitor cilostazol. J Surg Res 167:e385–e393PubMedGoogle Scholar
  31. 31.
    Morimoto K, Hasegawa T, Tanaka A, Wulan B, Yu J, Morimoto N, Okita Y, Okada K (2012) Free-radical scavenger edaravone inhibits both formation and development of abdominal aortic aneurysm in rats. J Vasc Surg 55:1749–1758PubMedGoogle Scholar
  32. 32.
    Binker MG, Binker-Cosen AA, Gaisano HY, de Cosen RH, Cosen-Binker LI (2011) TGF-beta1 increases invasiveness of SW1990 cells through Rac1/ROS/NF-kappaB/IL-6/MMP-2. Biochem Biophys Res Commun 405:140–145PubMedGoogle Scholar
  33. 33.
    Koli K, Myllarniemi M, Keski-Oja J, Kinnula VL (2008) Transforming growth factor-beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid Redox Signal 10:333–342PubMedGoogle Scholar
  34. 34.
    Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695–705PubMedGoogle Scholar
  35. 35.
    Olieslagers S, Pardali E, Tchaikovski V, ten Dijke P, Waltenberger J (2011) TGF-beta1/ALK5-induced monocyte migration involves PI3 K and p38 pathways and is not negatively affected by diabetes mellitus. Cardiovasc Res 91:510–518PubMedGoogle Scholar
  36. 36.
    Akool el-S, Gauer S, Osman B, Doller A, Schulz S, Geiger H, Pfeilschifter J, Eberhardt W (2012) Cyclosporin A and tacrolimus induce renal Erk1/2 pathway via ROS-induced and metalloproteinase-dependent EGF-receptor signaling. Biochem Pharmacol 83:286–295Google Scholar
  37. 37.
    Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340:195–202PubMedGoogle Scholar
  38. 38.
    Kam AY, Liu AM, Wong YH (2007) Formyl peptide-receptor like-1 requires lipid raft and extracellular signal-regulated protein kinase to activate inhibitor-kappa B kinase in human U87 astrocytoma cells. J Neurochem 103:1553–1566PubMedGoogle Scholar
  39. 39.
    Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA, Oliver AA, Factor V, Heuchel R, Mercurio F, Thorgeirsson SS, Sonenshein GE (2003) Transient activation of NF-kappaB through a TAK1/IKK kinase pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22:412–425PubMedGoogle Scholar
  40. 40.
    Tanaka Y, Kobayashi H, Suzuki M, Kanayama N, Terao T (2004) Transforming growth factor-beta1-dependent urokinase up-regulation and promotion of invasion are involved in Src-MAPK-dependent signaling in human ovarian cancer cells. J Biol Chem 279:8567–8576PubMedGoogle Scholar
  41. 41.
    Zhu Y, Culmsee C, Klumpp S, Krieglstein J (2004) Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience 123:897–906PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hao Zhang
    • 1
    • 2
  • Zhi-Wei Wang
    • 1
  • Hong-Bing Wu
    • 1
  • Zhi Li
    • 3
  • Luo-Cheng Li
    • 1
  • Xiao-Ping Hu
    • 1
  • Zong-Li Ren
    • 1
  • Bai-Jun Li
    • 1
  • Zhi-Peng Hu
    • 1
  1. 1.Department of Cardiothoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
  2. 2.Department of Cardiothoracic SurgeryXiangyang Central HospitalXiangyangChina
  3. 3.Department of OphtalmologyXiangyang Central HospitalXiangyangChina

Personalised recommendations