Advertisement

Molecular and Cellular Biochemistry

, Volume 374, Issue 1–2, pp 13–20 | Cite as

Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production

  • Da-yong Zhang
  • Yu Pan
  • Chong Zhang
  • Bing-xi Yan
  • Shan-shan Yu
  • Dong-ling Wu
  • Meng-meng Shi
  • Kai Shi
  • Xin-xiao Cai
  • Shuang-shuang Zhou
  • Jun-bo WangEmail author
  • Jian-ping Pan
  • Li-huang Zhang
Article

Abstract

Recent studies have demonstrated that the Wnt/β-catenin signaling plays an important role in stem cell aging. However, the mechanisms of cell senescence induced by Wnt/β-catenin signaling are still poorly understood. Our preliminary study has indicated that activated Wnt/β-catenin signaling can induce MSC aging. In this study, we reported that the Wnt/β-catenin signaling was a potent activator of reactive oxygen species (ROS) generation in MSCs. After scavenging ROS with N-acetylcysteine, Wnt/β-catenin signaling-induced MSC aging was significantly attenuated and the DNA damage and the expression of p16INK4A, p53, and p21 were reduced in MSCs. These results indicated that the Wnt/β-catenin signaling could induce MSC aging through promoting the intracellular production of ROS, and ROS may be the main mediators of MSC aging induced by excessive activation of Wnt/β-catenin signaling.

Keywords

Mesenchymal stem cells (MSCs) Aging Wnt/β-catenin signaling ROS 

Abbreviations

MSCs

Mesenchymal stem cells

NAC

N-acetylcysteine

DCFH-DA

2′,7′-Dichlorfluorescein-diacetate

SOD

Superoxide dismutase

MDA

Malondialdehyde

SDS-PAGE

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

FITC

Fluorescein isothiocyanate

DAPI

4′,6-Diamidino-2-phenylindole

Notes

Acknowledgments

The authors gratefully acknowledge financial support from the Teachers Research Fund of Zhejiang University City College (J-12019, J-12021), the Student Research Fund of Zhejiang University City College (XZ2012562091, X2012562098), the Zhejiang Provincial Foundation of National Science (LQ12H31001), and the Science Research Foundation of the Zhejiang Health Bureau (2012KYA068, 2012KYB066).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11010_2012_1498_MOESM1_ESM.doc (594 kb)
Supplementary material 1 (DOC 593 kb)

References

  1. 1.
    Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88. doi: 10.1146/annurev.cellbio.14.1.59 PubMedCrossRefGoogle Scholar
  2. 2.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. doi: 10.1038/nature03319 PubMedCrossRefGoogle Scholar
  3. 3.
    Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG, Leutz A (2006) Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 7(10):1037–1047. doi: 10.1038/ni1387 PubMedCrossRefGoogle Scholar
  4. 4.
    Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C (2006) Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 7(10):1048–1056. doi: 10.1038/ni1381 PubMedCrossRefGoogle Scholar
  5. 5.
    Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810. doi: 10.1126/science.1144090 PubMedCrossRefGoogle Scholar
  6. 6.
    Damalas A, Kahan S, Shtutman M, Ben-Ze’ev A, Oren M (2001) Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J 20(17):4912–4922. doi: 10.1093/emboj/20.17.4912 PubMedCrossRefGoogle Scholar
  7. 7.
    Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM (2008) Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol 28(5):1713–1723. doi: 10.1128/MCB.01360-07 PubMedCrossRefGoogle Scholar
  8. 8.
    Mao CD, Hoang P, DiCorleto PE (2001) Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 276(28):26180–26188. doi: 10.1074/jbc.M101188200 PubMedCrossRefGoogle Scholar
  9. 9.
    Marchand A, Atassi F, Gaaya A, Leprince P, Le Feuvre C, Soubrier F, Lompre AM, Nadaud S (2011) The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell 10(2):220–232. doi: 10.1111/j.1474-9726.2010.00661.x PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang DY, Wang HJ, Tan YZ (2011) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 6(6):e21397. doi: 10.1371/journal.pone.0021397 PubMedCrossRefGoogle Scholar
  11. 11.
    Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317(5839):803–806. doi: 10.1126/science.1143578 PubMedCrossRefGoogle Scholar
  12. 12.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214. doi: 10.1096/fj.02-0752rev PubMedCrossRefGoogle Scholar
  13. 13.
    Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10. doi: 10.1093/carcin/bgn250 PubMedCrossRefGoogle Scholar
  14. 14.
    Rodriguez-Vargas JM, Ruiz-Magana MJ, Ruiz–Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodriguez MI, Munoz-Gamez JA, de Almodovar MR, Siles E, Rivas AL, Jaattela M, Oliver FJ (2012) ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. doi: 10.1038/cr.2012.70 PubMedGoogle Scholar
  15. 15.
    Wang H, Zhou W, Zheng Z, Zhang P, Tu B, He Q, Zhu WG (2012) The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage. DNA Repair 11(2):146–156. doi: 10.1016/j.dnarep.2011.10.014 PubMedCrossRefGoogle Scholar
  16. 16.
    Inoue T, Kato K, Kato H, Asanoma K, Kuboyama A, Ueoka Y, Yamaguchi S, Ohgami T, Wake N (2009) Level of reactive oxygen species induced by p21Waf1/CIP1 is critical for the determination of cell fate. Cancer Sci 100(7):1275–1283. doi: 10.1111/j.1349-7006.2009.01166.x PubMedCrossRefGoogle Scholar
  17. 17.
    Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. doi: 10.1016/j.cell.2006.10.018 PubMedCrossRefGoogle Scholar
  18. 18.
    Yoon JC, Ng A, Kim BH, Bianco A, Xavier RJ, Elledge SJ (2010) Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev 24(14):1507–1518. doi: 10.1101/gad.1924910 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang Q, Zou L, Liu W, Hao W, Tashiro S, Onodera S, Ikejima T (2011) Inhibiting NF-kappaB activation and ROS production are involved in the mechanism of silibinin’s protection against D-galactose-induced senescence. Pharmacol Biochem Behav 98(1):140–149. doi: 10.1016/j.pbb.2010.12.006 PubMedCrossRefGoogle Scholar
  20. 20.
    De Boer J, Wang HJ, Van Blitterswijk C (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10(3–4):393–401. doi: 10.1089/107632704323061753 PubMedCrossRefGoogle Scholar
  21. 21.
    DeCarolis NA, Wharton KA Jr, Eisch AJ (2008) Which way does the Wnt blow? Exploring the duality of canonical Wnt signaling on cellular aging. Bioessays 30(2):102–106. doi: 10.1002/bies.20709 PubMedCrossRefGoogle Scholar
  22. 22.
    Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  23. 23.
    Luo Y, Zou P, Zou J, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKalpha dependent manner. Exp Gerontol 46(11):860–867. doi: 10.1016/j.exger.2011.07.005 PubMedCrossRefGoogle Scholar
  24. 24.
    Song H, Cha MJ, Song BW, Kim IK, Chang W, Lim S, Choi EJ, Ham O, Lee SY, Chung N, Jang Y, Hwang KC (2010) Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex. Stem Cells 28(3):555–563. doi: 10.1002/stem.302 PubMedGoogle Scholar
  25. 25.
    Kim HJ, Kim KS, Kim SH, Baek SH, Kim HY, Lee C, Kim JR (2009) Induction of cellular senescence by secretory phospholipase A2 in human dermal fibroblasts through an ROS-mediated p53 pathway. J Gerontol Ser A Biol Sci Med Sci 64(3):351–362. doi: 10.1093/gerona/gln055 CrossRefGoogle Scholar
  26. 26.
    Soberanes S, Gonzalez A, Urich D, Chiarella SE, Radigan KA, Osornio-Vargas A, Joseph J, Kalyanaraman B, Ridge KM, Chandel NS, Mutlu GM, De Vizcaya-Ruiz A, Budinger GR (2012) Particulate matter Air Pollution induces hypermethylation of the p16 promoter Via a mitochondrial ROS-JNK-DNMT1 pathway. Sci Rep 2:275. doi: 10.1038/srep00275 PubMedCrossRefGoogle Scholar
  27. 27.
    Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8(11):1291–1297. doi: 10.1038/ncb1491 PubMedCrossRefGoogle Scholar
  28. 28.
    Kajla S, Mondol AS, Nagasawa A, Zhang Y, Kato M, Matsuno K, Yabe-Nishimura C, Kamata T (2012) A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. FASEB J 26(5):2049–2059. doi: 10.1096/fj.11-196360 PubMedCrossRefGoogle Scholar
  29. 29.
    Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Lu J, Ding S, Li L, Shelton BJ, Tucker T, Evers BM, Zhang Z, Shi X (2012) Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/beta-catenin signaling pathway. Toxicology and applied pharmacology. doi: 10.1016/j.taap.2012.04.014 Google Scholar
  30. 30.
    Park JW, Kuehn HS, Kim SY, Chung KM, Choi H, Kim M, Kim J, Lee SY, Bae DS, Jin DK, Bae YS (2010) Downregulation of Wnt-mediated ROS generation is causally implicated in leprechaunism. Mol Cells 29(1):63–69. doi: 10.1007/s10059-010-0017-z PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Da-yong Zhang
    • 1
  • Yu Pan
    • 1
  • Chong Zhang
    • 1
  • Bing-xi Yan
    • 1
  • Shan-shan Yu
    • 1
  • Dong-ling Wu
    • 1
  • Meng-meng Shi
    • 1
  • Kai Shi
    • 1
  • Xin-xiao Cai
    • 1
  • Shuang-shuang Zhou
    • 1
  • Jun-bo Wang
    • 1
    Email author
  • Jian-ping Pan
    • 1
  • Li-huang Zhang
    • 1
  1. 1.Department of Basic MedicineSchool of Medicine and Life Sciences, Zhejiang University City CollegeHangzhouPeople’s Republic of China

Personalised recommendations