Molecular and Cellular Biochemistry

, Volume 373, Issue 1–2, pp 125–135

Sex-dependent differences in rat brown adipose tissue mitochondrial biogenesis and insulin signaling parameters in response to an obesogenic diet

  • A. Nadal-Casellas
  • M. Bauzá-Thorbrügge
  • A. M. Proenza
  • M. Gianotti
  • I. Lladó
Article

Abstract

Marked sex-dependent differences in mitochondrial function and redox status have been found in brown adipose tissue (BAT) of control rats. Insulin also plays a role in the development and maintenance of this tissue. The aim was to investigate sexual dimorphism in the effects of diet-induced obesity on BAT mitochondrial function, as well as on insulin signaling pathway. 10-week-old Wistar rats of both sexes were fed a control diet or a palatable high-fat diet for 26 weeks. Serum markers of insulin sensitivity were analyzed. Mitochondrial DNA (mtDNA) content, mitochondrial oxidative activities, PGC-1α mRNA levels, as well as the protein levels of insulin receptor subunit β (IRβ), glucose transporter GLUT4, β3-adrenergic receptor (β3-AR), phosphatidylinositol 3-kinase, mitochondrial transcription factor A (TFAM), cytochrome c oxidase subunit IV (COX IV), and uncoupling protein 1 (UCP1) were measured in BAT. Obese females showed impaired systemic insulin sensitivity accompanied by diminished IRβ, GLUT4, and β3-AR protein levels in BAT. In addition, TFAM and COX IV protein and PGC-1α mRNA levels decreased in obese females, whereas mtDNA levels increased. In obese males, oxidative and thermogenic capacities rose and no significant changes were observed in the insulin signaling pathway elements. The reduction of the insulin signaling pathway in BAT of obese females may be responsible, at least partially, for the impaired biogenesis process, which could favor the increase of body weight found in this sex. In contrast, the enhanced mitochondrial functionality in the BAT of males would avoid increased oxidative damage and the impairment of insulin signaling.

Keywords

High-fat diet Energy balance Insulin sensitivity Mitochondrial biogenesis Oxidative stress Sex differences 

References

  1. 1.
    Nechad M, Nedergaard J, Cannon B (1987) Noradrenergic stimulation of mitochondriogenesis in brown adipocytes differentiating in culture. Am J Physiol 253:C889–C894PubMedGoogle Scholar
  2. 2.
    Quevedo S, Roca P, Pico C, Palou A (1998) Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflugers Arch 436:689–695PubMedCrossRefGoogle Scholar
  3. 3.
    Nadal-Casellas A, Proenza AM, Gianotti M, Lladó I (2011) Brown adipose tissue redox status in response to dietary-induced obesity-associated oxidative stress in male and female rats. Stress 14:174–184PubMedGoogle Scholar
  4. 4.
    Rodriguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 277:42958–42963PubMedCrossRefGoogle Scholar
  5. 5.
    Justo R, Frontera M, Pujol E, Rodriguez-Cuenca S, Llado I, Garcia-Palmer FJ, Roca P, Gianotti M (2005) Gender-related differences in morphology and thermogenic capacity of brown adipose tissue mitochondrial subpopulations. Life Sci 76:1147–1158PubMedCrossRefGoogle Scholar
  6. 6.
    Valle A, Garcia-Palmer FJ, Oliver J, Roca P (2007) Sex differences in brown adipose tissue thermogenic features during caloric restriction. Cell Physiol Biochem 19:195–204PubMedCrossRefGoogle Scholar
  7. 7.
    Nadal-Casellas A, Amengual-Cladera E, Proenza AM, Llado I, Gianotti M (2010) Long-term high-fat-diet feeding impairs mitochondrial biogenesis in liver of male and female rats. Cell Physiol Biochem 26:291–302PubMedCrossRefGoogle Scholar
  8. 8.
    Ostronoff LK, Izquierdo JM, Enriquez JA, Montoya J, Cuezva JM (1996) Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochem J 316(Pt 1):183–191PubMedGoogle Scholar
  9. 9.
    Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P (2012) Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 227:2297–2310PubMedCrossRefGoogle Scholar
  10. 10.
    Fernandez-Silva P, Enriquez JA, Montoya J (2003) Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88:41–56PubMedCrossRefGoogle Scholar
  11. 11.
    Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMedCrossRefGoogle Scholar
  12. 12.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRefGoogle Scholar
  13. 13.
    Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027PubMedCrossRefGoogle Scholar
  14. 14.
    Huang PI, Chen YC, Chen LH, Juan CC, Ku HH, Wang ST, Chiou SH, Chiou GY, Chi CW, Hsu CC, Lee HC, Chen LK, Kao CL (2011) PGC-1alpha mediates differentiation of mesenchymal stem cells to brown adipose cells. J Atheroscler Thromb 18:966–980PubMedCrossRefGoogle Scholar
  15. 15.
    Kemnitz JW, Glick Z, Bray GA (1983) Ovarian hormones influence brown adipose tissue. Pharmacol Biochem Behav 18:563–566PubMedCrossRefGoogle Scholar
  16. 16.
    Yoshioka K, Yoshida T, Wakabayashi Y, Nishioka H, Kondo M (1988) Reduced brown adipose tissue thermogenesis of obese rats after ovariectomy. Endocrinol Jpn 35:537–543PubMedCrossRefGoogle Scholar
  17. 17.
    Lafontan M, Barbe P, Galitzky J, Tavernier G, Langin D, Carpene C, Bousquet-Melou A, Berlan M (1997) Adrenergic regulation of adipocyte metabolism. Hum Reprod 12(Suppl 1):6–20PubMedCrossRefGoogle Scholar
  18. 18.
    Chaudhry A, Granneman JG (1999) Differential regulation of functional responses by beta-adrenergic receptor subtypes in brown adipocytes. Am J Physiol 277:R147–R153PubMedGoogle Scholar
  19. 19.
    Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660PubMedGoogle Scholar
  20. 20.
    Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, Kahn CR, Benito M (2001) Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 108:1205–1213PubMedGoogle Scholar
  21. 21.
    Liu W, Singh R, Choi CS, Lee HY, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A (2012) Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem 287:7213–7223Google Scholar
  22. 22.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedCrossRefGoogle Scholar
  23. 23.
    Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943PubMedCrossRefGoogle Scholar
  24. 24.
    Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR (2001) Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 21:319–329PubMedCrossRefGoogle Scholar
  25. 25.
    Valverde AM, Arribas M, Mur C, Navarro P, Pons S, Cassard-Doulcier AM, Kahn CR, Benito M (2003) Insulin-induced up-regulated uncoupling protein-1 expression is mediated by insulin receptor substrate 1 through the phosphatidylinositol 3-kinase/Akt signaling pathway in fetal brown adipocytes. J Biol Chem 278:10221–10231PubMedCrossRefGoogle Scholar
  26. 26.
    Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA (2003) Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518PubMedCrossRefGoogle Scholar
  27. 27.
    Holmstrom MH, Iglesias-Gutierrez E, Zierath JR, Garcia-Roves PM (2012) Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes. Am J Physiol Endocrinol Metab 302:E731–E739Google Scholar
  28. 28.
    Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ, Lam KS (2005) Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem 280:18073–18080PubMedCrossRefGoogle Scholar
  29. 29.
    Gomez-Perez Y, Amengual-Cladera E, Catala-Niell A, Thomas-Moya E, Gianotti M, Proenza AM, Llado I (2008) Gender dimorphism in high-fat-diet-induced insulin resistance in skeletal muscle of aged rats. Cell Physiol Biochem 22:539–548PubMedCrossRefGoogle Scholar
  30. 30.
    Nadal-Casellas A, Proenza AM, Llado I, Gianotti M (2012) Sex-dependent differences in rat hepatic lipid accumulation and insulin sensitivity in response to diet-induced obesity. Biochem Cell Biol 90:164–172Google Scholar
  31. 31.
    Kumagai S, Holmang A, Bjorntorp P (1993) The effects of oestrogen and progesterone on insulin sensitivity in female rats. Acta Physiol Scand 149:91–97PubMedCrossRefGoogle Scholar
  32. 32.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481PubMedCrossRefGoogle Scholar
  33. 33.
    Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14:72–81PubMedCrossRefGoogle Scholar
  34. 34.
    Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176PubMedCrossRefGoogle Scholar
  35. 35.
    Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A (2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis 19:146–152PubMedCrossRefGoogle Scholar
  36. 36.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525PubMedCrossRefGoogle Scholar
  37. 37.
    Ravussin E, Galgani JE (2011) The implication of brown adipose tissue for humans. Annu Rev Nutr 31:33–47PubMedCrossRefGoogle Scholar
  38. 38.
    Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552PubMedCrossRefGoogle Scholar
  39. 39.
    Inagaki H, Hayashi T, Matsushima Y, Lin KH, Maeda S, Ichihara S, Kitagawa Y, Saito T (2000) Isolation of rat mitochondrial transcription factor A (r-Tfam) cDNA. DNA Seq 11:131–135PubMedGoogle Scholar
  40. 40.
    Sclafani A, Springer D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17:461–471PubMedCrossRefGoogle Scholar
  41. 41.
    Pickavance LC, Wilding JP (2007) Effects of S 15511, a therapeutic metabolite of the insulin-sensitizing agent S 15261, in the Zucker Diabetic Fatty rat. Diabetes Obes Metab 9:114–120PubMedCrossRefGoogle Scholar
  42. 42.
    Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295:E1269–E1276PubMedCrossRefGoogle Scholar
  43. 43.
    Chrzanowska-Lightowlers ZM, Turnbull DM, Lightowlers RN (1993) A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells. Anal Biochem 214:45–49PubMedCrossRefGoogle Scholar
  44. 44.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  45. 45.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  46. 46.
    Thomas PS, Farquhar MN (1978) Specific measurement of DNA in nuclei and nucleic acids using diaminobenzoic acid. Anal Biochem 89:35–44PubMedCrossRefGoogle Scholar
  47. 47.
    Justo R, Oliver J, Gianotti M (2005) Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion 5:45–53PubMedCrossRefGoogle Scholar
  48. 48.
    Nakano K, Tarashima M, Tachikawa E, Noda N, Nakayama T, Sasaki K, Mizoguchi E, Matsuzaki M, Osawa M (2005) Platelet mitochondrial evaluation during cytochrome c and dichloroacetate treatments of MELAS. Mitochondrion 5:426–433PubMedCrossRefGoogle Scholar
  49. 49.
    Amengual-Cladera E, Llado I, Gianotti M, Proenza AM (2012) Sex differences in the effect of high-fat diet feeding on rat white adipose tissue mitochondrial function and insulin sensitivity. Metabolism 61:1108–1117PubMedCrossRefGoogle Scholar
  50. 50.
    Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145:269–280PubMedCrossRefGoogle Scholar
  51. 51.
    Marette A, Bukowiecki LJ (1989) Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes. Am J Physiol 257:C714–C721PubMedGoogle Scholar
  52. 52.
    Dallner OS, Chernogubova E, Brolinson KA, Bengtsson T (2006) Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology 147:5730–5739PubMedCrossRefGoogle Scholar
  53. 53.
    Germack R, Starzec AB, Vassy R, Perret GY (1997) Beta-adrenoceptor subtype expression and function in rat white adipocytes. Br J Pharmacol 120:201–210PubMedCrossRefGoogle Scholar
  54. 54.
    Roca P, Rodriguez AM, Oliver P, Bonet ML, Quevedo S, Pico C, Palou A (1999) Brown adipose tissue response to cafeteria diet-feeding involves induction of the UCP2 gene and is impaired in female rats as compared to males. Pflugers Arch 438:628–634PubMedCrossRefGoogle Scholar
  55. 55.
    Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285:142–152PubMedCrossRefGoogle Scholar
  56. 56.
    Nadal-Casellas A, Proenza AM, Llado I, Gianotti M (2011) Effects of ovariectomy and 17-beta estradiol replacement on rat brown adipose tissue mitochondrial function. Steroids 76:1051–1056PubMedCrossRefGoogle Scholar
  57. 57.
    Simó R, Barbosa-Desongles A, Hernandez C, Selva DM (2012) IL1beta Down-regulation of Sex Hormone-Binding Globulin Production by Decreasing HNF-4alpha Via MEK-1/2 and JNK MAPK Pathways. Mol Endocrinol. doi:10.1210/me.2012-1152
  58. 58.
    Morisset AS, Blouin K, Tchernof A (2008) Impact of diet and adiposity on circulating levels of sex hormone-binding globulin and androgens. Nutr Rev 66:506–516PubMedCrossRefGoogle Scholar
  59. 59.
    Victor VM, Rocha M, Herance R, Hernandez-Mijares A (2011) Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17:3947–3958PubMedCrossRefGoogle Scholar
  60. 60.
    Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ, Shulman GI (2004) Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279:32345–32353PubMedCrossRefGoogle Scholar
  61. 61.
    Beyer TA, Xu W, Teupser D, auf dem Keller U, Bugnon P, Hildt E, Thiery J, Kan YW, Werner S (2008) Impaired liver regeneration in Nrf2 knockout mice: role of ROS-mediated insulin/IGF-1 resistance. EMBO J 27:212–223PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. Nadal-Casellas
    • 1
    • 2
  • M. Bauzá-Thorbrügge
    • 1
    • 2
  • A. M. Proenza
    • 1
    • 2
  • M. Gianotti
    • 1
    • 2
  • I. Lladó
    • 1
    • 2
  1. 1.Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la SalutInstitut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes BalearsPalmaSpain
  2. 2.Ciber Fisiopatología Obesidad y Nutrición (CB06/03)Instituto de Salud Carlos III

Personalised recommendations