Skip to main content
Log in

Genetic analysis of the TBX1 gene promoter in ventricular septal defects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) is the most common birth defects in humans. The genetic causes for CHD remain largely unknown. T-box transcription factor 1 (TBX1), a dosage-sensitive regulator, plays a critical role in the heart development. Mutations in the coding regions of TBX1 gene have been associated to 22q11 deletion syndrome with cardiac defects and isolated CHD cases, including ventricular septal defect (VSD). To date, TBX1 gene promoter region has not been analyzed and reported in CHD patients. We hypothesized that the sequence variants within TBX1 gene promoter region may change TBX1 levels and mediate CHD development. In this study, the promoter regions of TBX1 gene were genetically and functionally analyzed in 280 VSD patients and 267 healthy controls. Two novel heterozygous variants, g.4353C>T and g.4510A>C, were found in two VSD patients, but in none of controls. The single-nucleotide polymorphism-rs41260844, g.4199T>C, was found more frequent in VSD patients than controls (P < 0.01). Functional analyses revealed that these sequence variants significantly enhanced transcriptional activities of TBX1 gene promoter. Therefore, the sequence variants within TBX1 gene promoter may contribute to the VSD etiology by altering the expression levels of TBX1 gene. Pharmaceutical or genetic manipulation of TBX1 gene expression may provide a novel personalized therapy to prevent and treat late cardiac complications for the adult CHD patients carrying these variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  2. Verheugt CL, Uiterwaal CS, van der Velde ET et al (2010) Mortality in adult congenital heart disease. Eur Heart J 31:1220–1229

    Article  PubMed  Google Scholar 

  3. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8:50–60

    Article  PubMed  Google Scholar 

  4. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    Article  PubMed  CAS  Google Scholar 

  5. Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Cardiol Rev 6:91–97

    Article  PubMed  CAS  Google Scholar 

  6. Buckingham M, Meilhac S, Zaffran S (2005) Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 6:826–835

    Article  PubMed  CAS  Google Scholar 

  7. Cordes KR, Srivastava D (2009) MicroRNA regulation of cardiovascular development. Circ Res 104:724–732

    Article  PubMed  CAS  Google Scholar 

  8. Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942

    Article  PubMed  CAS  Google Scholar 

  9. Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126:1037–1048

    Article  PubMed  CAS  Google Scholar 

  10. van Weerd JH, Koshiba-Takeuchi K, Kwon C, Takeuchi JK (2011) Epigenetic factors and cardiac development. Cardiovasc Res 91:203–211

    Article  PubMed  Google Scholar 

  11. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    Article  PubMed  CAS  Google Scholar 

  12. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    Article  PubMed  CAS  Google Scholar 

  13. Xu H, Morishima M, Wylie JN et al (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  PubMed  CAS  Google Scholar 

  14. Chapman DL, Garvey N, Hancock S et al (1996) Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. Dev Dyn 206:379–390

    Article  PubMed  CAS  Google Scholar 

  15. Théveniau-Ruissy M, Dandonneau M, Mesbah K, Ghez O, Mattei MG, Miquerol L, Kelly RG (2008) The del22q11.2 candidate gene Tbx1 controls regional outflow tract identity and coronary artery patterning. Circ Res 103:142–148

    Article  PubMed  Google Scholar 

  16. Zhang Z, Huynh T, Baldini A (2006) Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development 133:3587–3595

    Article  PubMed  CAS  Google Scholar 

  17. Calmont A, Ivins S, Van Bueren KL et al (2009) Tbx1 controls cardiac neural crest cell migration during arch artery development by regulating Gbx2 expression in the pharyngeal ectoderm. Development 136:3173–3183

    Article  PubMed  CAS  Google Scholar 

  18. Scambler PJ (2010) 22q11 deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr Cardiol 31:378–390

    Article  PubMed  Google Scholar 

  19. Paylor R, Glaser B, Mupo A et al (2006) Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: implications for 22q11 deletion syndrome. Proc Natl Acad Sci USA 103:7729–7734

    Article  PubMed  CAS  Google Scholar 

  20. Yagi H, Furutani Y, Hamada H et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  PubMed  CAS  Google Scholar 

  21. Zweier C, Sticht H, Aydin-Yaylagül I, Campbell CE, Rauch A (2007) Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet 80:510–517

    Article  PubMed  CAS  Google Scholar 

  22. Gong W, Gottlieb S, Collins J et al (2001) Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 38:E45

    Article  PubMed  CAS  Google Scholar 

  23. Griffin HR, Töpf A, Glen E et al (2010) Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 96:1651–1655

    Article  PubMed  CAS  Google Scholar 

  24. Rauch R, Hofbeck M, Zweier C et al (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 47:321–331

    Article  PubMed  CAS  Google Scholar 

  25. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBX1. Nat Genet 27:286–291

    Article  PubMed  CAS  Google Scholar 

  26. Lindsay EA, Vitelli F, Su H et al (2001) Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  PubMed  CAS  Google Scholar 

  27. Merscher S, Funke B, Epstein JA et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Z, Baldini A (2008) In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum Mol Genet 17:150–157

    Article  PubMed  CAS  Google Scholar 

  29. Liao J, Kochilas L, Nowotschin S et al (2004) Full spectrum of malformations in velo-cardio-facial syndrome/DiGeorge syndrome mouse models by altering Tbx1 dosage. Hum Mol Genet 13:1577–1585

    Article  PubMed  CAS  Google Scholar 

  30. Vitelli F, Huynh T, Baldini A (2009) Gain of function of Tbx1 affects pharyngeal and heart development in the mouse. Genesis 47:188–195

    Article  PubMed  CAS  Google Scholar 

  31. Chieffo C, Garvey N, Gong W et al (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277

    Article  PubMed  CAS  Google Scholar 

  32. Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 235:62–73

    Article  PubMed  CAS  Google Scholar 

  33. Freyer L, Morrow BE (2010) Canonical Wnt signaling modulates Tbx1, Eya1, and Six1 expression, restricting neurogenesis in the otic vesicle. Dev Dyn 239:1708–1722

    Article  PubMed  CAS  Google Scholar 

  34. Yamagishi H, Maeda J, Hu T et al (2003) Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev 17:269–281

    Article  PubMed  CAS  Google Scholar 

  35. Chen L, Fulcoli FG, Tang S, Baldini A (2009) Tbx1 regulates proliferation and differentiation of multipotent heart progenitors. Circ Res 105:842–851

    Article  PubMed  CAS  Google Scholar 

  36. Fulcoli FG, Huynh T, Scambler PJ, Baldini A (2009) Tbx1 regulates the BMP-Smad1 pathway in a transcription independent manner. PLoS One 4:e6049

    Article  PubMed  Google Scholar 

  37. Hu T, Yamagishi H, Maeda J, McAnally J, Yamagishi C, Srivastava D (2004) Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131:5491–5502

    Article  PubMed  CAS  Google Scholar 

  38. Ivins S, Lammerts van Beuren K, Roberts C et al (2005) Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev Biol 285:554–569

    Article  PubMed  CAS  Google Scholar 

  39. Liao J, Aggarwal VS, Nowotschin S, Bondarev A, Lipner S, Morrow BE (2008) Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev Biol 316:524–537

    Article  PubMed  CAS  Google Scholar 

  40. Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573

    Article  PubMed  CAS  Google Scholar 

  41. Pane LS, Zhang Z, Ferrentino R, Huynh T, Cutillo L, Baldini A (2012) Tbx1 is a negative modulator of Mef2c. Hum Mol Genet 21:2485–2496

    Article  PubMed  CAS  Google Scholar 

  42. van Bueren KL, Papangeli I, Rochais F et al (2010) Hes1 expression is reduced in Tbx1 null cells and is required for the development of structures affected in 22q11 deletion syndrome. Dev Biol 340:369–380

    Article  PubMed  Google Scholar 

  43. Byrd NA, Meyers EN (2005) Loss of Gbx2 results in neural crest cell patterning and pharyngeal arch artery defects in the mouse embryo. Dev Biol 284:233–245

    Article  PubMed  CAS  Google Scholar 

  44. Semina EV, Reiter R, Leysens NJ et al (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14:392–399

    Article  PubMed  CAS  Google Scholar 

  45. Watanabe Y, Miyagawa-Tomita S, Vincent SD, Kelly RG, Moon AM, Buckingham ME (2010) Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res 106:495–503

    Article  PubMed  CAS  Google Scholar 

  46. Rochais F, Dandonneau M, Mesbah K, Jarry T, Mattei MG, Kelly RG (2009) Hes1 is expressed in the second heart field and is required for outflow tract development. PLoS One 4:e6267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (81070173) and Shandong Provincial Natural Science Foundation (ZR2010HM111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yan.

Additional information

Haihua Wang, Dongfeng Chen, and Liming Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Chen, D., Ma, L. et al. Genetic analysis of the TBX1 gene promoter in ventricular septal defects. Mol Cell Biochem 370, 53–58 (2012). https://doi.org/10.1007/s11010-012-1397-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1397-5

Keywords

Navigation