Molecular and Cellular Biochemistry

, Volume 369, Issue 1–2, pp 175–181 | Cite as

Analysis of the transcriptome of differentiating and non-differentiating preadipocytes from rats and humans by next generation sequencing

  • Fabian Birzele
  • Sybille Fässler
  • Heike Neubauer
  • Tobias Hildebrandt
  • Bradford S. Hamilton
Article

Abstract

Alongside cell lines such as 3T3-L1 cells, primary cell culture models of adipogenesis have helped in developing an understanding of the process of adipocyte recruitment and maintenance, which may lead to therapeutic advances to treat the growing epidemic of obesity. Recently, it has been demonstrated that fat cell progenitors (DFAT) established through ceiling culture of adipocytes retain an enhanced ability to undergo adipocyte differentiation compared to preadipocytes isolated from the stromal vascular fraction of adipose tissue. Clonal expansion of rat DFAT cells identified differentiation capable and incapable cell strains. To understand the mechanisms underlying these differences, comparison of their transcriptomes by next generation sequencing was performed. Two hundred seventy-eight genes with a significant fold change of 1.4 were detected as being consistently deregulated between differentiating and non-differentiating strains. Bioinformatic network analyses identified components of the extra-cellular matrix and PPARγ as important genes in this process, suggesting crosstalk between ECM and transcription factors influences differentiation. Analyses of the transcriptomes of human DFAT cells in early and late passage (non-differentiating) confirmed the importance of these pathways in maintaining an adipogenic potential.

Keywords

Preadipocyte Differentiation Extra-cellular matrix PPARγ Transcriptome 

Supplementary material

11010_2012_1380_MOESM1_ESM.docx (39 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. 1.
    Eckel RH, York DA, Rossner S, Hubbard V, Caterson I, St Jeor ST, Hayman LL, Mullis RM, Blair SN (2004) Prevention conference VII: obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation 110:2968–2975PubMedCrossRefGoogle Scholar
  2. 2.
    Turk MW, Yang K, Hravnak M, Sereika SM, Ewing LJ, Burke LE (2009) Randomized clinical trials of weight loss maintenance: a review. J Cardiovasc Nurs 24:58–80PubMedGoogle Scholar
  3. 3.
    Darimont C, Zbinden I, Avanti O, Leone-Vautravers P, Giusti V, Burckhardt P, Pfeifer AM, Mace K (2003) Reconstitution of telomerase activity combined with HPV-E7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization. Cell Death Differ 10:1025–1031PubMedCrossRefGoogle Scholar
  4. 4.
    Green H, Kehinde O (1974) Sublines of mouse 3T3 cells that accumulate lipid. Cell 1:113–116CrossRefGoogle Scholar
  5. 5.
    Wabitsch M, Bruderlein S, Melzner I, Braun M, Mechtersheimer G, Moller P (2000) LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int J Cancer 88:889–894PubMedCrossRefGoogle Scholar
  6. 6.
    Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E, Debatin KM, Hauner H (2001) Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Relat Metab Disord 25:8–15PubMedCrossRefGoogle Scholar
  7. 7.
    Fischer-Posovszky P, Newell FS, Wabitsch M, Tornqvist HE (2008) Human SGBS cells—a unique tool for studies of human fat cell biology. Obes Facts 1:184–189PubMedCrossRefGoogle Scholar
  8. 8.
    Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang HH, Kumar S, Barnett AH, Eggo MC (2000) Ceiling culture of mature human adipocytes: use in studies of adipocyte functions. J Endocrinol 164:119–128PubMedCrossRefGoogle Scholar
  10. 10.
    Van RL, Bayliss CE, Roncari DA (1976) Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest 58:699–704PubMedCrossRefGoogle Scholar
  11. 11.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  12. 12.
    Birzele F, Schaub J, Rust W, Clemens C, Baum P, Kaufmann H, Weith A, Schulz TW, Hildebrandt T (2010) Into the unknown: expression profiling without genome sequence information in CHO by next generation sequencing. Nucleic Acids Res 38:3999–4010PubMedCrossRefGoogle Scholar
  13. 13.
    Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380PubMedGoogle Scholar
  14. 14.
    Sugihara H, Yonemitsu N, Miyabara S, Yun K (1986) Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation 31:42–49PubMedCrossRefGoogle Scholar
  15. 15.
    Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML (2008) A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 321:956–960PubMedCrossRefGoogle Scholar
  16. 16.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCrossRefGoogle Scholar
  17. 17.
    Vencio RZ, Brentani H, Patrao DF, Pereira CA (2004) Bayesian model accounting for within-class biological variability in serial analysis of gene expression (SAGE). BMC Bioinformatics 5:119PubMedCrossRefGoogle Scholar
  18. 18.
    Han J, Luo T, Gu Y, Li G, Jia W, Luo M (2009) Cathepsin K regulates adipocyte differentiation: possible involvement of type I collagen degradation. Endocr J 56:55–63PubMedCrossRefGoogle Scholar
  19. 19.
    Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Ann Rev Biochem 77:289–312PubMedCrossRefGoogle Scholar
  20. 20.
    Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798–800PubMedCrossRefGoogle Scholar
  21. 21.
    Wu Z, Bucher NL, Farmer SR (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16:4128–4136PubMedGoogle Scholar
  22. 22.
    Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307PubMedGoogle Scholar
  23. 23.
    Chao LC, Bensinger SJ, Villanueva CJ, Wroblewski K, Tontonoz P (2008) Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. Mol Endocrinol 22:2596–2608PubMedCrossRefGoogle Scholar
  24. 24.
    Mauney J, Volloch V (2009) Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biol 28:251–262PubMedCrossRefGoogle Scholar
  25. 25.
    Quelard D, Lavergne E, Hendaoui I, Elamaa H, Tiirola U, Heljasvaara R, Pihlajaniemi T, Clement B, Musso O (2008) A cryptic frizzled module in cell surface collagen 18 inhibits Wnt/beta-catenin signaling. PLoS One 3:e1878PubMedCrossRefGoogle Scholar
  26. 26.
    Tchkonia T, Morbeck DE, Von ZT, Van DJ, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684PubMedCrossRefGoogle Scholar
  27. 27.
    Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells in a chemically defined medium. J Clin Invest 84:1663–1670PubMedCrossRefGoogle Scholar
  28. 28.
    David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:2553–2562PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Fabian Birzele
    • 1
  • Sybille Fässler
    • 2
  • Heike Neubauer
    • 2
  • Tobias Hildebrandt
    • 1
  • Bradford S. Hamilton
    • 2
  1. 1.Target Discovery ResearchBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
  2. 2.CardioMetabolic Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany

Personalised recommendations