Molecular and Cellular Biochemistry

, Volume 367, Issue 1–2, pp 31–42 | Cite as

Post-transcriptional regulation of VEGF-A mRNA levels by mitogen-activated protein kinases (MAPKs) during metabolic stress associated with ischaemia/reperfusion

  • Bryan W. Miller
  • Joanna M. Hay
  • Sally A. Prigent
  • Martin DickensEmail author


Angiogenesis is a well-characterised response to the metabolic stresses that occur during ischaemia/reperfusion, but the signalling pathways that regulate it are poorly understood. We tested whether activation of mitogen-activated protein kinases (MAPKs) was involved in regulating the expression of pro-angiogenic growth factors by the metabolic stresses associated with ischaemia/reperfusion in H9c2 rat cardiomyoblasts. Metabolic stress had no effect on vascular endothelial growth factor (VEGF) mRNA levels, but recovery after metabolic inhibition led to a strong induction of VEGF-A mRNA (3.8 ± 0.5-fold at 4 h), a modest rise in VEGF-C mRNA levels (1.7 ± 0.3-fold at 4 h), with no effect on VEGF-B or -D. A VEGF-A promoter reporter construct was unresponsive to metabolic inhibition/recovery and increases in VEGF-A mRNA were not blocked by the transcription inhibitor actinomycin D suggesting that increases in VEGF mRNA were due to enhanced VEGF-A mRNA stability. In addition, studies using reporter constructs demonstrated that regions within the 5′ untranslated region (UTR) contributed to enhanced mRNA stability following recovery from metabolic stress. Increases in VEGF-A mRNA were abolished by inhibition of extracellular signal-regulated kinase or c-jun N-terminal kinase MAPKs, suggesting that these kinases may promote angiogenesis in response to metabolic stress during ischaemia/reperfusion by increasing VEGF-A message stability.


Vascular endothelial growth factor Angiogenesis Metabolic stress Mitogen-activated protein kinase 



Activating transcription factor 2


Adenosine 5′ triphosphate


Chloramphenicol acetyl transferase


Deoxy cytosine 5′ triphosphate


Extracellular signal-regulated kinase


c-jun N-terminal kinase


Mitogen-activated protein kinase


MAPK kinase 6


Phorbol myristoyl acetate


Reverse transcription polymerase chain reaction


Standard error of the mean


Vascular endothelial growth factor



This work was supported, in part, by a grant from the British Heart Foundation (PG#98111) and studentships from the Biotechnology and Biological Sciences Research Council (#08170) and Medical Research Council (#G78/6321). We would like to thank Dr. Ben Zion-Levy for providing us with the pV3.4-CAT construct.


  1. 1.
    Operschall C, Falivene L, Clozel JP, Roux S (2000) A new model of chronic cardiac ischemia in rabbits. J Appl Physiol 88(4):1438–1445PubMedGoogle Scholar
  2. 2.
    Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359(6398):845–848PubMedCrossRefGoogle Scholar
  3. 3.
    Shammas NW, Moss AJ, Sullebarger JT, Gutierrez OH, Rocco TA (1993) Acquired coronary angiogenesis after myocardial infarction. Cardiology 83(3):212–216PubMedCrossRefGoogle Scholar
  4. 4.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedCrossRefGoogle Scholar
  5. 5.
    Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Sci STKE 2001(112):RE21PubMedCrossRefGoogle Scholar
  6. 6.
    Shibuya M, Ito N, Claesson-Welsh L (1999) Structure and function of vascular endothelial growth factor receptor-1 and -2. Curr Top Microbiol Immunol 237:59–83PubMedCrossRefGoogle Scholar
  7. 7.
    Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995PubMedGoogle Scholar
  8. 8.
    Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: implications for coronary angiogenesis. Cardiovasc Res 28(8):1176–1179PubMedCrossRefGoogle Scholar
  9. 9.
    Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y (1994) Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 267(5 Pt 2):H1948–H1954PubMedGoogle Scholar
  10. 10.
    Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA (2000) Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med 342(9):626–633PubMedCrossRefGoogle Scholar
  11. 11.
    Becker PM, Alcasabas A, Yu AY, Semenza GL, Bunton TE (2000) Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am J Respir Cell Mol Biol 22(3):272–279PubMedGoogle Scholar
  12. 12.
    Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156(3):965–976PubMedCrossRefGoogle Scholar
  13. 13.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583PubMedCrossRefGoogle Scholar
  14. 14.
    Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA (1995) Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76(5):758–766PubMedCrossRefGoogle Scholar
  15. 15.
    Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270(22):13333–13340PubMedCrossRefGoogle Scholar
  16. 16.
    Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271(5):2746–2753PubMedCrossRefGoogle Scholar
  17. 17.
    Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14(20):2475–2483PubMedCrossRefGoogle Scholar
  18. 18.
    Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A, Cahill MM, Tonks ID, Grimmond SM, Townson S, Wells C, Little M, Cummings MC, Hayward NK, Kay GF (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86(2):E29–E35PubMedCrossRefGoogle Scholar
  19. 19.
    Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153(2):381–394PubMedCrossRefGoogle Scholar
  20. 20.
    Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70(2):240–253PubMedCrossRefGoogle Scholar
  21. 21.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869PubMedGoogle Scholar
  22. 22.
    Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116(12):1413–1423PubMedCrossRefGoogle Scholar
  23. 23.
    Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH (1996) Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79(2):162–173PubMedCrossRefGoogle Scholar
  24. 24.
    Punn A, Mockridge JW, Farooqui S, Marber MS, Heads RJ (2000) Sustained activation of p42/p44 mitogen-activated protein kinase during recovery from simulated ischaemia mediates adaptive cytoprotection in cardiomyocytes. Biochem J 350(Pt 3):891–899PubMedCrossRefGoogle Scholar
  25. 25.
    Knight RJ, Buxton DB (1996) Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218(1):83–88PubMedCrossRefGoogle Scholar
  26. 26.
    Milanini J, Vinals F, Pouyssegur J, Pages G (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273(29):18165–18172PubMedCrossRefGoogle Scholar
  27. 27.
    Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J (2000) Stress-activated protein kinases (JNK and p38/HOG) are essential for vascular endothelial growth factor mRNA stability. J Biol Chem 275(34):26484–26491PubMedCrossRefGoogle Scholar
  28. 28.
    Rodriguez-Gabriel MA, Russell P (2008) Control of mRNA stability by SAPKs. Top Curr Genet 20:159–170. doi: 10.1007/4735_2007_0248 PubMedCrossRefGoogle Scholar
  29. 29.
    Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69(6):1476–1486PubMedCrossRefGoogle Scholar
  30. 30.
    Nagarkatti DS, Sha’afi RI (1998) Role of p38 MAP kinase in myocardial stress. J Mol Cell Cardiol 30(8):1651–1664PubMedCrossRefGoogle Scholar
  31. 31.
    Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271(2):736–741PubMedCrossRefGoogle Scholar
  32. 32.
    Harding SJ, Browne GJ, Miller BW, Prigent SA, Dickens M (2010) Activation of ASK1, downstream MAPKK and MAPK isoforms during cardiac ischaemia. Biochim Biophys Acta 1802(9):733–740PubMedGoogle Scholar
  33. 33.
    Esumi K, Nishida M, Shaw D, Smith TW, Marsh JD (1991) NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol 260(6 Pt 2):H1743–H1752PubMedGoogle Scholar
  34. 34.
    Coles LS, Bartley MA, Bert A, Hunter J, Polyak S, Diamond P, Vadas MA, Goodall GJ (2004) A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. Eur J Biochem 271(3):648–660PubMedCrossRefGoogle Scholar
  35. 35.
    Du M, Roy KM, Zhong L, Shen Z, Meyers HE, Nichols RC (2006) VEGF gene expression is regulated post-transcriptionally in macrophages. FEBS J 273(4):732–745. doi: 10.1111/j.1742-4658.2006.05106.x PubMedCrossRefGoogle Scholar
  36. 36.
    Iida K, Kawakami Y, Sone H, Suzuki H, Yatoh S, Isobe K, Takekoshi K, Yamada N (2002) Vascular endothelial growth factor gene expression in a retinal pigmented cell is up-regulated by glucose deprivation through 3′ UTR. Life Sci 71(14):1607–1614PubMedCrossRefGoogle Scholar
  37. 37.
    Onesto C, Berra E, Grepin R, Pages G (2004) Poly(A)-binding protein-interacting protein 2, a strong regulator of vascular endothelial growth factor mRNA. J Biol Chem 279(33):34217–34226. doi: 10.1074/jbc.M400219200 PubMedCrossRefGoogle Scholar
  38. 38.
    Goldberg-Cohen I, Furneauxb H, Levy AP (2002) A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR. J Biol Chem 277(16):13635–13640PubMedCrossRefGoogle Scholar
  39. 39.
    Shih SC, Claffey KP (1999) Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274(3):1359–1365PubMedCrossRefGoogle Scholar
  40. 40.
    Dibbens JA, Miller DL, Damert A, Risau W, Vadas MA, Goodall GJ (1999) Hypoxic regulation of vascular endothelial growth factor mRNA stability requires the cooperation of multiple RNA elements. Mol Biol Cell 10(4):907–919PubMedGoogle Scholar
  41. 41.
    Chen CY, Gherzi R, Andersen JS, Gaietta G, Jurchott K, Royer HD, Mann M, Karin M (2000) Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 14(10):1236–1248PubMedGoogle Scholar
  42. 42.
    Essafi-Benkhadir K, Pouyssegur J, Pages G (2010) Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability. Methods Mol Biol 661:451–469. doi: 10.1007/978-1-60761-795-2_28 PubMedCrossRefGoogle Scholar
  43. 43.
    Yang Z, Zhang X, Darrah PA, Mosser DM (2010) The regulation of Th1 responses by the p38 MAPK. J Immunol 185(10):6205–6213. doi: 10.4049/jimmunol.1000243 PubMedCrossRefGoogle Scholar
  44. 44.
    Bhattacharyya S, Gutti U, Mercado J, Moore C, Pollard HB, Biswas R (2011) MAPK signaling pathways regulate IL-8 mRNA stability and IL-8 protein expression in cystic fibrosis lung epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 300(1):L81–L87. doi: 10.1152/ajplung.00051.2010 PubMedCrossRefGoogle Scholar
  45. 45.
    Lin WN, Lin CC, Cheng HY, Yang CM (2011) Regulation of cyclooxygenase-2 and cytosolic phospholipase A(2) gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases. Br J Pharmacol 163(8):1691–1706. doi: 10.1111/j.1476-5381.2011.01312.x PubMedCrossRefGoogle Scholar
  46. 46.
    Schagger H, von Jagow G (1987) Tricine–sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Bryan W. Miller
    • 1
  • Joanna M. Hay
    • 1
  • Sally A. Prigent
    • 1
  • Martin Dickens
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of LeicesterLeicesterUK

Personalised recommendations