Molecular and Cellular Biochemistry

, Volume 366, Issue 1–2, pp 69–80

Identification of a major enzyme for the synthesis and hydrolysis of cyclic ADP-ribose in amphibian cells and evolutional conservation of the enzyme from human to invertebrate

  • Takayuki Ikeda
  • Shin Takasawa
  • Naoya Noguchi
  • Koji Nata
  • Akiyo Yamauchi
  • Iwao Takahashi
  • Takeo Yoshikawa
  • Akira Sugawara
  • Hideto Yonekura
  • Hiroshi Okamoto
Article

Abstract

Cyclic ADP-ribose (cADPR), a metabolite of NAD+, is known to function as a second messenger for intracellular Ca2+ mobilization in various vertebrate and invertebrate tissues. In this study, we isolated two Xenopus laevis cDNAs (frog cd38 and cd157 cDNAs) homologous to the one encoding the human cADPR-metabolizing enzyme CD38. Frog CD38 and CD157 are 298-amino acid proteins with 35.9 and 27.2 % identity to human CD38 and CD157, respectively. Transfection of expression vectors for frog CD38 and CD157 into COS-7 cells revealed that frog CD38 had NAD+ glycohydrolase, ADP-ribosyl cyclase (ARC), and cADPR hydrolase activities, and that frog CD157 had no enzymatic activity under physiological conditions. In addition, when recombinant CD38 and frog brain homogenate were electrophoresed on an SDS–polyacrylamide gel, ARC of the brain homogenate migrated to the same position in the gel as that of frog CD38, suggesting that frog CD38 is the major enzyme responsible for cADPR metabolism in amphibian cells. The frog cd38 gene consists of eight exons and is ubiquitously expressed in various tissues. These findings provide evidence for the existence of the CD38–cADPR signaling system in frog cells and suggest that the CD38–cADPR signaling system is conserved during vertebrate evolution.

Keywords

ADP-ribosyl cyclase CD157 CD38 Cyclic ADP-ribose hydrolase Xenopus laevis 

References

  1. 1.
    Clapper DL, Walseth TF, Dargie PJ, Lee HC (1987) Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262:9561–9568PubMedGoogle Scholar
  2. 2.
    Galione A, Lee HC, Busa WB (1991) Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253:1143–1146PubMedCrossRefGoogle Scholar
  3. 3.
    Takasawa S, Nata K, Yonekura H, Okamoto H (1993) Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science 259:370–373PubMedCrossRefGoogle Scholar
  4. 4.
    Lee HC (2002) Structures, metabolism and functions. In: Lee HC (ed) Cyclic ADP-ribose and NAADP. Kluwer, Dordrecht, pp 1–21CrossRefGoogle Scholar
  5. 5.
    Hua S-Y, Tokimasa T, Takasawa S, Furuya Y, Nohmi M, Okamoto H, Kuba K (1994) Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron 12:1073–1079PubMedCrossRefGoogle Scholar
  6. 6.
    Wu Y, Kuzma J, Marechal E, Graeff R, Lee HC, Foster R, Chua NH (1997) Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130PubMedCrossRefGoogle Scholar
  7. 7.
    Albrieux M, Lee HC, Villaz M (1998) Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes. J Biol Chem 273:14566–14574PubMedCrossRefGoogle Scholar
  8. 8.
    Kuroda R, Kontam K, Kanda Y, Katada T, Nakano T, Satoh Y, Suzuki N, Kuroda H (2001) Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Development 128:4405–4414PubMedGoogle Scholar
  9. 9.
    Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, Randall TD, Lund FE (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216PubMedCrossRefGoogle Scholar
  10. 10.
    Okamoto H, Takasawa S (2002) Recent advances in the Okamoto model: the CD38-cyclic ADP-ribose signal system and the regenerating gene protein (Reg)-Reg receptor system in p-cells. Diabetes 51:S462–S473PubMedCrossRefGoogle Scholar
  11. 11.
    Glick DL, Hellmich MR, Beushausen S, Tempst P, Bayley H, Strumwasser F (1991) Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul 2:211–218PubMedGoogle Scholar
  12. 12.
    Lee HC, Aarhus R (1991) ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul 2:203–209PubMedGoogle Scholar
  13. 13.
    Nata K, Sugimoto T, Tohgo A, Takamura T, Noguchi N, Matsuoka A, Nakamura T, Shikama K, Yonekura H, Takasawa S, Okamoto H (1995) The structure of the Aplysia kurodai gene encoding ADP-ribosyl cyclase, a second-messenger enzyme. Gene 158:213–218PubMedCrossRefGoogle Scholar
  14. 14.
    States DJ, Walseth TF, Lee HC (1992) Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci 17:495PubMedCrossRefGoogle Scholar
  15. 15.
    Tohgo A, Takasawa S, Noguchi N, Koguma T, Nata K, Sugimoto T, Furuya Y, Yonekura H, Okamoto H (1994) Essential cysteine residues for cyclic ADP-ribose synthesis and hydrolysis by CD38. J Biol Chem 269:28555–28557PubMedGoogle Scholar
  16. 16.
    Jackson DG, Bell JI (1990) Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol 144:2811–2815PubMedGoogle Scholar
  17. 17.
    Harada N, Santos-Argumedo L, Chang R, Grimaldi JC, Lund EF, Brannan CI, Copeland NG, Jenkins NA, Heath AW, Parkhouse RME, Howard M (1993) Expression cloning of a cDNA encoding a novel murine B cell activation marker. J Immunol 151:3111–3118PubMedGoogle Scholar
  18. 18.
    Takasawa S, Tohgo A, Noguchi N, Koguma T, Nata K, Sugimoto T, Yonekura H, Okamoto H (1993) Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem 268:26052–26054PubMedGoogle Scholar
  19. 19.
    Koguma T, Takasawa S, Tohgo A, Karasawa T, Furuya Y, Yonekura H, Okamoto H (1994) Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islet of Langerhans. Biochim Biophys Acta 1223:160–162PubMedCrossRefGoogle Scholar
  20. 20.
    Ebihara S, Sasaki T, Hida W, Kikuchi Y, Oshiro T, Shimura S, Takasawa S, Okamoto H (1997) Role of cyclic ADP-ribose in ATP-activated potassium currents in alveolar macrophages. J Biol Chem 272:16023–16029PubMedCrossRefGoogle Scholar
  21. 21.
    Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997) Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene 186:285–292PubMedCrossRefGoogle Scholar
  22. 22.
    Sasamori K, Sasaki T, Takasawa S, Tamada T, Nara M, Irokawa T (2004) Cyclic ADP-ribose, a putative Ca2+-mobilizing second messenger, operates in submucosal gland acinar cells. Am J Physiol Lung Cell Mol Physiol 287:L69–L78PubMedCrossRefGoogle Scholar
  23. 23.
    Howard M, Grimaldi JC, Bazan IF, Lund FE, Santos-Argumedo L, Parkhouse RME, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059PubMedCrossRefGoogle Scholar
  24. 24.
    Lee HC, Zocchi E, Guida L, Franco L, Benatti U, De Flora A (1993) Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun 191:639–645PubMedCrossRefGoogle Scholar
  25. 25.
    Hirata Y, Kimura N, Sato K, Ohsugi Y, Takasawa S, Okamoto H, Ishikawa J, Kaisho T, Ishihara K, Hirano T (1994) ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett 356:244–248PubMedCrossRefGoogle Scholar
  26. 26.
    Kaisho T, Ishikawa J, Oritani K, Inazawa J, Tomizawa H, Muraoka O, Ochi T, Hirano T (1994) BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc Natl Acad Sci USA 91:5325–5329PubMedCrossRefGoogle Scholar
  27. 27.
    Kim H, Jacobson EL, Jacobson MK (1993) Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science 261:1330–1333PubMedCrossRefGoogle Scholar
  28. 28.
    Muller-Steffner HM, Augustin A, Schuber F (1996) Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem 271:23967–23972PubMedCrossRefGoogle Scholar
  29. 29.
    Sauve AA, Munshi C, Lee HC, Schramm VL (1998) The reaction mechanism for CD38. A signal intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Biochemistry 37:13239–13249PubMedCrossRefGoogle Scholar
  30. 30.
    Schuber F, Lund FE (2004) Structure and enzymology of ADP-ribosyl cyclases: conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4:249–261PubMedCrossRefGoogle Scholar
  31. 31.
    Kukimoto I, Hoshino S, Kontani K, Inageda K, Nishina H, Takahashi K, Katda T (1996) Stimulation of ADP-ribosyl cyclase activity of the cell surface antigen CD38 by zinc ions resulting from inhibition of its NAD + glycohydrolase activity. Eur J Biochem 239:177–182PubMedCrossRefGoogle Scholar
  32. 32.
    Bertheher V, Tixier JM, Muller-Steffner H, Schuber F, Deterre P (1998) Human CD38 is an authentic NAD(P)+ glycohydrolase. Biochem J 330:1383–1390Google Scholar
  33. 33.
    Lund FE, Moutm MJ, Muller-Steffner H, Schuber F (2005) ADP-ribosyl cyclase and GDP-ribosyl cyclase activities are not always equivalent: impact on the study of the physiological role of cyclic ADP-ribose. Anal Biochem 346:336–338PubMedCrossRefGoogle Scholar
  34. 34.
    Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q (2007) Structural basis for formation and hydrolysis of calcium messenger cyclic ADP-ribose by human CD38. J Biol Chem 282:5853–5861PubMedCrossRefGoogle Scholar
  35. 35.
    Kato I, Yamamoto Y, Fujimura M, Noguchi N, Takasawa S, Okamoto H (1999) CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i, and insulin secretion. J Biol Chem 274:1869–1872PubMedCrossRefGoogle Scholar
  36. 36.
    Goodrich SP, Muller-Steffner H, Osman A, Moutin M, Kusser K, Roberts A, Woodland DL, Randall TD, Kellenberger E, LoVerde PT, Schuber F, Lund FE (2005) Production of calcium-mobilizing metabolites by a novel member of the ADP-ribosyl cyclase family expressed in Schistosoma mansoni. Biochemistry 44:11082–11097PubMedCrossRefGoogle Scholar
  37. 37.
    Kuhn I, Kellenberger E, Rognan D, Lund FE, Muller-Steffner H, Schuber F (2006) Redesign of Schistosoma mansoni NAD + catabolizing enzyme: active site H103W mutation restores ADP-ribosyl cyclase activity. Biochemistry 45:11867–11878PubMedCrossRefGoogle Scholar
  38. 38.
    Churamam D, Boulware MJ, Geach TJ, Martin ACR, Moy GW, Su YH, Vacquier VD, Marchant JS, Dale L, Patel S (2007) Molecular characterization of a novel intracellular ADP-ribosyl cyclase. PLoS One 2:e797CrossRefGoogle Scholar
  39. 39.
    Davis LC, Morgan AJ, Ruas M, Wong JL, Graef RM, Poustka AJ, Lee HC, Wessel GM, Parrington J, Galione A (2008) Ca2+ signaling occurs via second messenger release from intraorganelle synthesis sites. Curr Biol 18:1612–1618PubMedCrossRefGoogle Scholar
  40. 40.
    Okamoto H, Takasawa S, Tohgo A, Nata K, Kato I, Noguchi N (1997) Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38: Inhibition of hydrolysis by ATP and physiological significance. Methods Enzymol 280:306–318PubMedCrossRefGoogle Scholar
  41. 41.
    Karasawa T, Takasawa S, Yamakawa K, Yonekura H, Okamoto H, Nakamura S (1995) NAD+-glycohydrolase from Streptococcus pyogenes shows cyclic ADP-ribose forming activity. FEMS Microbiol Lett 130:201–204PubMedCrossRefGoogle Scholar
  42. 42.
    Graeff RM, Walseth TF, Hill HK, Lee HC (1996) Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry 35:379–386PubMedCrossRefGoogle Scholar
  43. 43.
    Lee HC, Graeff RM, Munshi CB, Walseth TF, Aarhus R (1997) Large-scale purification of Aplysia ADP-ribosyl cyclase and measurement of its activity by fluorometric assay. Methods Enzymol 280:331–340PubMedCrossRefGoogle Scholar
  44. 44.
    Ziegler M, Jorcke D, Schweiger M (1997) Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase. Biochem J 326:401–405PubMedGoogle Scholar
  45. 45.
    Takasawa S, Akiyama T, Nata K, Kuroki M, Tohgo A, Noguchi N, Kobayashi S, Kato I, Katada T, Okamoto H (1998) Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic p-cells. J Biol Chem 273:2497–2500PubMedCrossRefGoogle Scholar
  46. 46.
    Nakazawa T, Takasawa S, Noguchi N, Nata K, Tohgo A, Mori M, Nakagawara K, Akiyama T, Ikeda T, Yamauchi A, Takahashi I, Yoshikawa T, Okamoto H (2005) Genomic organization, chromosomal localization, and promoter of human gene for FK506-binding protein 12.6. Gene 360:55–64PubMedCrossRefGoogle Scholar
  47. 47.
    Itoh M, Ishihara K, Tomizawa H, Tanaka H, Kobune Y, Ishikawa J, Kaisho T, Hirano T (1994) Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem Biophys Res Commun 203:1309–1317PubMedCrossRefGoogle Scholar
  48. 48.
    Furuya Y, Takasawa S, Yonekura H, Tanaka T, Takahara J, Okamoto H (1995) Cloning of a cDNA encoding rat bone marrow stromal cell antigen 1 (BST-1) from the islets of Langerhans. Gene 165:329–330PubMedCrossRefGoogle Scholar
  49. 49.
    Munshi C, Thiel DJ, Mathews II, Aarhus R, Walseth TF, Lee HC (1999) Characterization of the active site of ADP-ribosyl cyclase. J Biol Chem 274:30770–30777PubMedCrossRefGoogle Scholar
  50. 50.
    Munshi C, Aarhus R, Greaff R, Walseth TF, Levitt D, Lee HC (2000) Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J Biol Chem 275:21566–21571PubMedCrossRefGoogle Scholar
  51. 51.
    Okamoto H, Takasawa S (2001) CD38. In: Creighton TE (ed) Encyclopedia of molecular medicine. Wiley, New York, pp 601–604Google Scholar
  52. 52.
    Muraoka O, Tanaka H, Itoh M, Ishihara K, Hirano T (1996) Genomic structure of human BST-1. Immunol Lett 54:1–4PubMedCrossRefGoogle Scholar
  53. 53.
    McNagny KM, Cazenave PA, Cooper MD (1988) A cell surface glycoprotein that marks early B lineage cells and mature myeloid lineage cells in mice. J Immunol 141:2551–2556PubMedGoogle Scholar
  54. 54.
    Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M, Malavasi F (1990) CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol 145:878–884PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Takayuki Ikeda
    • 1
    • 2
  • Shin Takasawa
    • 3
  • Naoya Noguchi
    • 2
  • Koji Nata
    • 4
  • Akiyo Yamauchi
    • 3
  • Iwao Takahashi
    • 4
  • Takeo Yoshikawa
    • 2
  • Akira Sugawara
    • 2
  • Hideto Yonekura
    • 1
  • Hiroshi Okamoto
    • 5
  1. 1.Department of BiochemistryKanazawa Medical University School of MedicineUchinada, Kahoku-gun, IshikawaJapan
  2. 2.Department of Advanced Biological Sciences for Regeneration (Kotobiken Medical Laboratories)Tohoku University Graduate School of MedicineSendai, MiyagiJapan
  3. 3.Department of BiochemistryNara Medical UniversityKashihara, NaraJapan
  4. 4.Department of Medical BiochemistryIwate Medical University School of PharmacyYahaba-cho, Shiwa-gun, IwateJapan
  5. 5.Tohoku UniversitySendai, MiyagiJapan

Personalised recommendations