Advertisement

Molecular and Cellular Biochemistry

, Volume 364, Issue 1–2, pp 345–350 | Cite as

Emerging roles of SIRT6 on telomere maintenance, DNA repair, metabolism and mammalian aging

  • Gaoxiang Jia
  • Ling Su
  • Sunil Singhal
  • Xiangguo LiuEmail author
Article

Abstract

With the characterization of Sir2 gene in yeast aging, its mammalian homologs Sirtuins 1–7 have been attracting attention from scientists with various research backgrounds. Among Sirtuins, SIRT1 is the most extensively studied. Recent progress on mammalian Sirtuins has shown that SIRT6 as a histone deacetylase may also play a critical role in regulating mammalian aging. This review summarizes recent advances on SIRT6 as a key modulator of telomere structure, DNA repair, metabolism, and NF-kappa B pathway in aging. In addition, we discuss the challenges that remain to be studied in SIRT6 biology.

Keywords

SIRT6 Telomere structure DNA repair Metabolism Mammalian aging 

References

  1. 1.
    Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13PubMedCrossRefGoogle Scholar
  2. 2.
    Mauro C et al (2011) NF-kappaB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13(10):1272–1279Google Scholar
  3. 3.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedCrossRefGoogle Scholar
  4. 4.
    Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91(7):1033–1042PubMedCrossRefGoogle Scholar
  5. 5.
    Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13(19):2570–2580PubMedCrossRefGoogle Scholar
  6. 6.
    Mostoslavsky R et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329PubMedCrossRefGoogle Scholar
  7. 7.
    McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26(2):234–282PubMedGoogle Scholar
  8. 8.
    McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23(4):315–376PubMedGoogle Scholar
  9. 9.
    Blackburn EH (1984) The molecular structure of centromeres and telomeres. Annu Rev Biochem 53:163–194PubMedCrossRefGoogle Scholar
  10. 10.
    Shampay J, Szostak JW, Blackburn EH (1984) DNA sequences of telomeres maintained in yeast. Nature 310(5973):154–157PubMedCrossRefGoogle Scholar
  11. 11.
    Blackburn EH (2000) Telomere states and cell fates. Nature 408(6808):53–56PubMedCrossRefGoogle Scholar
  12. 12.
    Gisselsson D et al (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98(22):12683–12688PubMedCrossRefGoogle Scholar
  13. 13.
    Shuster MI et al (2000) A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification. Genes Chromosomes Cancer 28(2):153–163PubMedCrossRefGoogle Scholar
  14. 14.
    Meeker AK et al (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10(10):3317–3326PubMedCrossRefGoogle Scholar
  15. 15.
    Meeker AK et al (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62(22):6405–6409PubMedGoogle Scholar
  16. 16.
    Allsopp RC et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89(21):10114–10118PubMedCrossRefGoogle Scholar
  17. 17.
    Haigis MC, Guarente LP (2006) Mammalian sirtuins—emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921PubMedCrossRefGoogle Scholar
  18. 18.
    Michishita E et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng WH, Muftuoglu M, Bohr VA (2007) Werner syndrome protein: functions in the response to DNA damage and replication stress in S-phase. Exp Gerontol 42(9):871–878PubMedCrossRefGoogle Scholar
  20. 20.
    Multani AS, Chang S (2007) WRN at telomeres: implications for aging and cancer. J Cell Sci 120(Pt 5):713–721PubMedCrossRefGoogle Scholar
  21. 21.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705PubMedCrossRefGoogle Scholar
  22. 22.
    Michishita E et al (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 8(16):2664–2666PubMedCrossRefGoogle Scholar
  23. 23.
    Hasan S et al (2002) Acetylation regulates the DNA end-trimming activity of DNA polymerase beta. Mol Cell 10(5):1213–1222PubMedCrossRefGoogle Scholar
  24. 24.
    Beard BC, Wilson SH, Smerdon MJ (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc Natl Acad Sci USA 100(13):7465–7470PubMedCrossRefGoogle Scholar
  25. 25.
    Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21(21):5943–5952PubMedCrossRefGoogle Scholar
  26. 26.
    Bailey SM et al (2004) Dysfunctional mammalian telomeres join with DNA double-strand breaks. DNA Repair (Amst) 3(4):349–357CrossRefGoogle Scholar
  27. 27.
    McCord RA et al (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1(1):109–121Google Scholar
  28. 28.
    Mao Z et al (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332(6036):1443–1446PubMedCrossRefGoogle Scholar
  29. 29.
    Finkel T, Serrano M, Blasco MA (2007) The common biology of cancer and ageing. Nature 448(7155):767–774PubMedCrossRefGoogle Scholar
  30. 30.
    Ma W et al (2007) GCIP/CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. J Cell Biochem 100(6):1376–1386PubMedCrossRefGoogle Scholar
  31. 31.
    Carswell EA et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670PubMedCrossRefGoogle Scholar
  32. 32.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  33. 33.
    Van Meter M et al (2011) Sirt6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle 10(18):3153–3158PubMedCrossRefGoogle Scholar
  34. 34.
    Zhong L, Mostoslavsky R (2010) SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 1(1):17–21PubMedCrossRefGoogle Scholar
  35. 35.
    Xiao C et al (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 285(47):36776–36784PubMedCrossRefGoogle Scholar
  36. 36.
    Kawahara TL et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74PubMedCrossRefGoogle Scholar
  37. 37.
    Schwer B et al (2010) Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 107(50):21790–21794PubMedCrossRefGoogle Scholar
  38. 38.
    Zhong L et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293PubMedCrossRefGoogle Scholar
  39. 39.
    Sun S et al (2004) Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 9(1):76–87PubMedGoogle Scholar
  40. 40.
    Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120(4):473–482PubMedCrossRefGoogle Scholar
  41. 41.
    McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10(1):63–79Google Scholar
  42. 42.
    Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17(3):313–321PubMedCrossRefGoogle Scholar
  43. 43.
    Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Natl Rev Mol Cell Biol 6(4):298–305CrossRefGoogle Scholar
  44. 44.
    Zhang D, Liu Y, Chen D (2011) SIRT-ain relief from age-inducing stress. Aging (Albany NY) 3(2):158–161Google Scholar
  45. 45.
    Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392PubMedCrossRefGoogle Scholar
  46. 46.
    Levine B, Kroemer G (2009) Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 16(1):1–2PubMedCrossRefGoogle Scholar
  47. 47.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326PubMedCrossRefGoogle Scholar
  48. 48.
    Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695PubMedCrossRefGoogle Scholar
  49. 49.
    Liu G et al (2011) Salermide upregulates death receptor 5 expression through the ATF4–ATF3–CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med. doi: 10.1111/j.1582-4934.2011.01401.x
  50. 50.
    Hipkiss AR (2008) Energy metabolism, altered proteins, sirtuins and ageing: converging mechanisms? Biogerontology 9(1):49–55PubMedCrossRefGoogle Scholar
  51. 51.
    Koltai E et al (2010) Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131(1):21–28PubMedCrossRefGoogle Scholar
  52. 52.
    Adler AS et al (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21(24):3244–3257PubMedCrossRefGoogle Scholar
  53. 53.
    Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186PubMedCrossRefGoogle Scholar
  54. 54.
    Kawahara TL et al (2011) Dynamic chromatin localization of sirt6 shapes stress- and aging-related transcriptional networks. PLoS Genet 7(6):e1002153PubMedCrossRefGoogle Scholar
  55. 55.
    Baohua Y, Li L (2012) Effects of SIRT6 silencing on collagen metabolism in human dermal fibroblasts. Cell Biol Int 36(1):105–108PubMedCrossRefGoogle Scholar
  56. 56.
    Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015PubMedCrossRefGoogle Scholar
  57. 57.
    Wang F et al (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6(4):505–514PubMedCrossRefGoogle Scholar
  58. 58.
    Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704):2105–2108PubMedCrossRefGoogle Scholar
  59. 59.
    Bunz F et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282(5393):1497–1501PubMedCrossRefGoogle Scholar
  60. 60.
    Vaziri H et al (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 16(19):6018–6033PubMedCrossRefGoogle Scholar
  61. 61.
    Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31(1–2):295–301PubMedCrossRefGoogle Scholar
  62. 62.
    Di Leonardo A et al (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551PubMedCrossRefGoogle Scholar
  63. 63.
    Van Meter M et al (2011) Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging (Albany NY) 3(9):829–835Google Scholar
  64. 64.
    Wohlgemuth SE et al (2007) Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 10(3):281–292PubMedCrossRefGoogle Scholar
  65. 65.
    Xiao G (2007) Autophagy and NF-kappaB: fight for fate. Cytokine Growth Factor Rev 18(3–4):233–243PubMedCrossRefGoogle Scholar
  66. 66.
    Djavaheri-Mergny M et al (2007) Regulation of autophagy by NFkappaB transcription factor and reactives oxygen species. Autophagy 3(4):390–392PubMedGoogle Scholar
  67. 67.
    Nivon M et al (2009) Autophagy activation by NFkappaB is essential for cell survival after heat shock. Autophagy 5(6):766–783PubMedGoogle Scholar
  68. 68.
    Lee IH et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105(9):3374–3379PubMedCrossRefGoogle Scholar
  69. 69.
    Salminen A, Kaarniranta K (2009) SIRT1: regulation of longevity via autophagy. Cell Signal 21(9):1356–1360PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Gaoxiang Jia
    • 1
  • Ling Su
    • 1
  • Sunil Singhal
    • 2
  • Xiangguo Liu
    • 1
    Email author
  1. 1.Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life SciencesShandong UniversityJinanPeople’s Republic of China
  2. 2.Division of Thoracic Surgery, Department of SurgeryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations