Molecular and Cellular Biochemistry

, Volume 364, Issue 1–2, pp 165–171 | Cite as

Overexpression of hepatitis B x-interacting protein in HepG2 cells enhances tumor-induced angiogenesis

  • Fengze Wang
  • Hongrong Fei
  • Bing Qi
  • Shutong Yao
  • Zhengyao Chang


Hepatocellular carcinoma (HCC) is a common malignancy and a leading cause of cancer death worldwide. Hepatitis B x-interacting protein (HBXIP), a cofactor of survivin, was originally identified by binding with the C-terminus of the HBx and negatively regulated the activity of HBx. In this study, the effect of HBXIP on the hepatoma cells-induced angiogenesis was investigated. Proliferation and migration of human umbilical vein endothelial cells (HUVECs) were detected by MTT and transwell assay, respectively. Tube formation and chick chorioallantoic membrane model were used to observe the angiogenesis. Vascular endothelial growth factor activity was assayed using ELISA kits. Western blotting was performed to examine the protein expression. Our results indicated that overexpression of HBXIP increased HepG2 cell-induced endothelial cells migration, proliferation, and angiogenesis, which may be related to increasing phosphorylation of endothelial NO synthase in HUVECs. These results suggest that HBXIP may play an important role in tumorigenesis by enhancing angiogenesis in HCC.


HBXIP Hepatoma cells Angiogenesis HUVECs eNOS 


  1. 1.
    Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7(6):448–458. doi:10.1038/nrgastro.2010.100 PubMedCrossRefGoogle Scholar
  2. 2.
    Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H (2011) Angiogenesis in chronic liver disease and its complications. Liver Int 31(2):146–162. doi:10.1111/j.1478-3231.2010.02369.x PubMedCrossRefGoogle Scholar
  3. 3.
    de Castro Junior G, Puglisi F, de Azambuja E, El Saghir NS, Awada A (2006) Angiogenesis and cancer: a cross-talk between basic science and clinical trials (the “do ut des” paradigm). Crit Rev Oncol Hematol 59(1):40–50. doi:10.1016/j.critrevonc.2006.02.007 PubMedCrossRefGoogle Scholar
  4. 4.
    Shojaei F, Zhong C, Wu X, Yu L, Ferrara N (2008) Role of myeloid cells in tumor angiogenesis and growth. Trends Cell Biol 18(8):372–378. doi:10.1016/j.tcb.2008.06.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Melegari M, Scaglioni PP, Wands JR (1998) Cloning and characterization of a novel hepatitis B virus × binding protein that inhibits viral replication. J Virol 72(3):1737–1743PubMedGoogle Scholar
  6. 6.
    Marusawa H, Matsuzawa S, Welsh K, Zou H, Armstrong R, Tamm I, Reed JC (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 22(11):2729–2740. doi:10.1093/emboj/cdg263 PubMedCrossRefGoogle Scholar
  7. 7.
    Fujii R, Zhu C, Wen Y, Marusawa H, Bailly-Maitre B, Matsuzawa S, Zhang H, Kim Y, Bennett CF, Jiang W, Reed JC (2006) HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res 66(18):9099–9107. doi:10.1158/0008-5472.CAN-06-1886 PubMedCrossRefGoogle Scholar
  8. 8.
    Wang FZ, Fei HR, Lian LH, Wang JM, Qiu YY (2011) Hepatitis B x-interacting protein induces HepG2 cell proliferation through activation of the phosphatidylinositol 3-kinase/Akt pathway. Exp Biol Med Maywood 236(1):62–69. doi:10.1258/ebm.2010.010179 PubMedCrossRefGoogle Scholar
  9. 9.
    Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100(6):782–794. doi:10.1161/01.RES.0000259593.07661.1e PubMedCrossRefGoogle Scholar
  10. 10.
    Tsai WL, Chung RT (2010) Viral hepatocarcinogenesis. Oncogene 29(16):2309–2324. doi:10.1038/onc.2010.36 PubMedCrossRefGoogle Scholar
  11. 11.
    Benhenda S, Cougot D, Buendia MA, Neuveut C (2009) Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res 103:75–109. doi:10.1016/S0065-230X(09)03004-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Lupberger J, Hildt E (2007) Hepatitis B virus-induced oncogenesis. World J Gastroenterol 13(1):74–81PubMedGoogle Scholar
  13. 13.
    Shai E, Varon D (2011) Development, cell differentiation, angiogenesis-microparticles and their roles in angiogenesis. Arterioscler Thromb Vasc Biol 31(1):10–14. doi:10.1161/ATVBAHA.109.200980 PubMedCrossRefGoogle Scholar
  14. 14.
    Tang J, Wang J, Zheng F, Kong X, Guo L, Yang J, Zhang L, Huang Y (2010) Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 339(1–2):107–118. doi:10.1007/s11010-009-0374-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101(4):731–736. doi:10.1172/JCI1699 PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalez E, Kou R, Lin AJ, Golan DE, Michel T (2002) Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase. J Biol Chem 277(42):39554–39560. doi:10.1074/jbc.M207299200 PubMedCrossRefGoogle Scholar
  17. 17.
    Daher Z, Boulay PL, Desjardins F, Gratton JP, Claing A (2010) Vascular endothelial growth factor receptor-2 activates ADP-ribosylation factor 1 to promote endothelial nitric-oxide synthase activation and nitric oxide release from endothelial cells. J Biol Chem 285(32):24591–24599. doi:10.1074/jbc.M110.115311 PubMedCrossRefGoogle Scholar
  18. 18.
    Hu Z, Chen J, Wei Q, Xia Y (2008) Bidirectional actions of hydrogen peroxide on endothelial nitric-oxide synthase phosphorylation and function: co-commitment and interplay of Akt and AMPK. J Biol Chem 283(37):25256–25263. doi:10.1074/jbc.M802455200 PubMedCrossRefGoogle Scholar
  19. 19.
    Kandalaft LE, Motz GT, Busch J, Coukos G (2011) Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol 344:129–148. doi:10.1007/82_2010_95 PubMedCrossRefGoogle Scholar
  20. 20.
    Qin J, Chen X, Yu-Lee LY, Tsai MJ, Tsai SY (2010) Nuclear receptor COUP-TFII controls pancreatic islet tumor angiogenesis by regulating vascular endothelial growth factor/vascular endothelial growth factor receptor-2 signaling. Cancer Res 70(21):8812–8821. doi:10.1158/0008-5472.CAN-10-0551 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Fengze Wang
    • 1
  • Hongrong Fei
    • 2
  • Bing Qi
    • 1
  • Shutong Yao
    • 3
  • Zhengyao Chang
    • 1
  1. 1.School of Biological ScienceTaishan Medical UniversityTaianPeople’s Republic of China
  2. 2.School of PharmacyTaishan Medical UniversityTaianChina
  3. 3.School of Basic Medical SciencesTaianChina

Personalised recommendations