Molecular and Cellular Biochemistry

, Volume 364, Issue 1–2, pp 131–145 | Cite as

Expression and role in glycolysis of human ADP-dependent glucokinase

  • Susan Richter
  • Jan P. Richter
  • Sunali Y. Mehta
  • Amanda M. Gribble
  • Andrew J. Sutherland-Smith
  • Kathryn M. Stowell
  • Cristin G. Print
  • Ron S. Ronimus
  • William R. Wilson
Article

Abstract

A novel murine enzyme, ADP-dependent glucokinase (ADPGK), has been shown to catalyse glucose phosphorylation using ADP as phosphoryl donor. The ancestral ADPGK gene appears to have been laterally transferred from Archaea early in metazoan evolution, but its biological role has not been established. Here, we undertake an initial investigation of the functional properties of human ADPGK in human tumour cell lines and specifically test the hypothesis that ADPGK might prime glycolysis using ADP under stress conditions such as hypoxia. Recombinant human ADPGK was confirmed to catalyse ADP-dependent glucose phosphorylation in vitro, with an apparent KM for glucose of 0.29 mM. Expression databases and western blotting of surgical samples demonstrated high expression in many human tissues, including tumours. Unlike hexokinase-2 (HK2), RNAi studies with exon arrays showed that ADPGK is not a transcriptional target of hypoxia inducible factor-1. Consistent with this, ADPGK protein was not upregulated by hypoxia or anoxia. Surprisingly, stable fivefold overexpression of ADPGK in H460 or HCT116 cells had no apparent effect on proliferation or glycolysis, and did not rescue clonogenicity or glycolysis when HK2 was suppressed by siRNA. Furthermore, suppression of ADPGK by siRNA did not cause detectable inhibition of glycolysis or cell killing by anoxia, although it did induce a statistically significant decrease in plating efficiency of H460 cells under aerobic conditions. Thus, human ADPGK catalyses ADP-dependent phosphorylation of glucose in vitro, but despite its high expression in human tumour cell lines it appears not to make a quantifiable contribution to glycolysis under the conditions evaluated.

Keywords

ADP-dependent glucokinase Glycolysis Hypoxia siRNA Hexokinase-2 Exon arrays 

Supplementary material

11010_2011_1212_MOESM1_ESM.pdf (562 kb)
Supplementary material 1 (PDF 562 kb)

References

  1. 1.
    Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057PubMedCrossRefGoogle Scholar
  2. 2.
    Irwin DM, Tan H (2008) Molecular evolution of the vertebrate hexokinase family: identification of a conserved fifth vertebrate hexokinase gene. Comp Biochem Physiol Part D 3:96–107Google Scholar
  3. 3.
    Ronimus RS, Morgan HW (2004) Cloning and biochemical characterisation of a novel mouse ADP-dependent glucokinase. Biochem Biophys Res Commun 315:652–658PubMedCrossRefGoogle Scholar
  4. 4.
    Kengen SW, de Bok FA, van Loo ND, Dijkema C, Stams AJ, de Vos WM (1994) Evidence for the operation of a novel Embden-Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J Biol Chem 269:17537–17541PubMedGoogle Scholar
  5. 5.
    Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337PubMedCrossRefGoogle Scholar
  6. 6.
    Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Zeitschr 152:309–344Google Scholar
  7. 7.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  8. 8.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefGoogle Scholar
  9. 9.
    Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330:1340–1344PubMedCrossRefGoogle Scholar
  10. 10.
    Ganapathy V, Thangaraju M, Prasad PD (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther 121:29–40PubMedCrossRefGoogle Scholar
  11. 11.
    Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24PubMedCrossRefGoogle Scholar
  12. 12.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410PubMedCrossRefGoogle Scholar
  14. 14.
    Adams V, Kempf W, Hassam S, Briner J (1995) Determination of hexokinase isoenzyme I and II composition by RT-PCR: increased hexokinase isoenzyme II in human renal cell carcinoma. Biochem Mol Med 54:53–58PubMedCrossRefGoogle Scholar
  15. 15.
    Rempel A, Bannasch P, Mayer D (1994) Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochim Biophys Acta 1219:660–668PubMedGoogle Scholar
  16. 16.
    Riddle SR, Ahmad A, Ahmad S, Deeb SS, Malkki M, Schneider BK, Allen CB, White CW (2000) Hypoxia induces hexokinase II gene expression in human lung cell line A549. Am J Physiol Lung Cell Mol Physiol 278:L407–L416PubMedGoogle Scholar
  17. 17.
    Liu H, Hu YP, Savaraj N, Priebe W, Lampidis TJ (2001) Hypersensitization of tumor cells to glycolytic inhibitors. Biochemistry 40:5542–5547PubMedCrossRefGoogle Scholar
  18. 18.
    Kurtoglu M, Maher JC, Lampidis TJ (2007) Differential toxic mechanisms of 2-deoxy-d-glucose versus 2-fluorodeoxy-d-glucose in hypoxic and normoxic tumor cells. Antiox Redox Signal 9:1383–1390CrossRefGoogle Scholar
  19. 19.
    Hobbs S, Jitrapakdee S, Wallace JC (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun 252:368–372PubMedCrossRefGoogle Scholar
  20. 20.
    Guise CP, Abbattista M, Singleton RS, Holford SD, Connolly J, Dachs GU, Fox SB, Pollock R, Harvey J, Guilford P, Do¤ate F, Wilson WR, Patterson AV (2010) The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–1584PubMedCrossRefGoogle Scholar
  21. 21.
    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193PubMedCrossRefGoogle Scholar
  22. 22.
    Smyth GK, Michaud J, Scott HS (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075PubMedCrossRefGoogle Scholar
  23. 23.
    Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154PubMedCrossRefGoogle Scholar
  24. 24.
    Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC, Zlotnik A (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80PubMedCrossRefGoogle Scholar
  25. 25.
    Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067PubMedCrossRefGoogle Scholar
  26. 26.
    Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, Atkins D, Wang Y (2005) Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 11:7234–7242PubMedCrossRefGoogle Scholar
  27. 27.
    Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, Shah RB, Chandran U, Monzon FA, Becich MJ, Wei JT, Pienta KJ, Ghosh D, Rubin MA, Chinnaiyan AM (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8:393–406PubMedCrossRefGoogle Scholar
  28. 28.
    Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, Michalopoulos G, Becich M, Monzon FA (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7:64PubMedCrossRefGoogle Scholar
  29. 29.
    Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN, Wu KJ, Luxon BA, Sinha M, Parker AS, Sun LZ, Ahlquist DA, Wood CG, Copland JA (2007) Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res 13:4740–4749PubMedCrossRefGoogle Scholar
  30. 30.
    Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Murty VV (2008) Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 47:755–765PubMedCrossRefGoogle Scholar
  31. 31.
    Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350PubMedCrossRefGoogle Scholar
  32. 32.
    Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61:6669–6673PubMedGoogle Scholar
  33. 33.
    Marin-Hernandez A, Gallardo-Perez JC, Rodriguez-Enriquez S, Encalada R, Moreno-Sanchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767PubMedCrossRefGoogle Scholar
  34. 34.
    Ahn KJ, Kim J, Yun M, Park JH, Lee JD (2009) Enzymatic properties of the N- and C-terminal halves of human hexokinase II. BMB Rep 42:350–355PubMedCrossRefGoogle Scholar
  35. 35.
    Postic C, Shiota M, Magnuson MA (2001) Cell-specific roles of glucokinase in glucose homeostasis. Recent Prog Horm Res 56:195–217PubMedCrossRefGoogle Scholar
  36. 36.
    John SA, Ottolia M, Weiss JN, Ribalet B (2008) Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor. Pflugers Arch 456:307–322PubMedCrossRefGoogle Scholar
  37. 37.
    Kominsky DJ, Campbell EL, Colgan SP (2010) Metabolic shifts in immunity and inflammation. J Immunol 184:4062–4068PubMedCrossRefGoogle Scholar
  38. 38.
    Mathupala SP, Rempel A, Pedersen PL (2001) Glucose catabolism in cancer cells. Identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 276:43407–43412PubMedCrossRefGoogle Scholar
  39. 39.
    Kang HT, Ju JW, Cho JW, Hwang ES (2003) Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J Biol Chem 278:51223–51231PubMedCrossRefGoogle Scholar
  40. 40.
    Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208:313–326PubMedCrossRefGoogle Scholar
  41. 41.
    Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, Davis S, Stark AM, Merino MJ, Kurek R, Mehdorn HM, Davis G, Steinberg SM, Meltzer PS, Aldape K, Steeg PS (2009) Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res 7:1438–1445PubMedCrossRefGoogle Scholar
  42. 42.
    Peng Q, Zhou Q, Zhou J, Zhong D, Pan F, Liang H (2008) Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol Ther 7:1128–1135PubMedCrossRefGoogle Scholar
  43. 43.
    Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74:3735–3739PubMedCrossRefGoogle Scholar
  44. 44.
    Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618PubMedCrossRefGoogle Scholar
  45. 45.
    Song CW, Clement JJ, Levitt SH (1976) Preferential cytotoxicity of 5-thio-d-glucose against hypoxic tumor cells. J Natl Cancer Inst 57:603–605PubMedGoogle Scholar
  46. 46.
    Lampidis TJ, Kurtoglu M, Maher JC, Liu H, Krishan A, Sheft V, Szymanski S, Fokt I, Rudnicki WR, Ginalski K, Lesyng B, Priebe W (2006) Efficacy of 2-halogen substituted d-glucose analogs in blocking glycolysis and killing “hypoxic tumor cells”. Cancer Chemother Pharmacol 58:725–734PubMedCrossRefGoogle Scholar
  47. 47.
    Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237PubMedCrossRefGoogle Scholar
  48. 48.
    Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469PubMedCrossRefGoogle Scholar
  49. 49.
    Mabon ME, Mao X, Jiao Y, Scott BA, Crowder CM (2009) Systematic identification of gene activities promoting hypoxic death. Genetics 181:483–496PubMedCrossRefGoogle Scholar
  50. 50.
    Neumann B, Walter T, Heriche JK, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wuensche A, Satagopam V, Schmitz MHA, Chapuis C, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J (2010) Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464:721–727PubMedCrossRefGoogle Scholar
  51. 51.
    Labes A, Schonheit P (2003) ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324. Arch Microbiol 180:69–75PubMedCrossRefGoogle Scholar
  52. 52.
    Koga S, Yoshioka I, Sakuraba H, Takahashi M, Sakasegawa S, Shimizu S, Ohshima T (2000) Biochemical characterization, cloning, and sequencing of ADP-dependent (AMP-forming) glucokinase from two hyperthermophilic archaea, Pyrococcus furiosus and Thermococcus litoralis. J Biochem 128:1079–1085PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Susan Richter
    • 1
  • Jan P. Richter
    • 3
  • Sunali Y. Mehta
    • 2
  • Amanda M. Gribble
    • 3
  • Andrew J. Sutherland-Smith
    • 3
  • Kathryn M. Stowell
    • 3
  • Cristin G. Print
    • 2
  • Ron S. Ronimus
    • 4
  • William R. Wilson
    • 1
  1. 1.Auckland Cancer Society Research CentreFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
  2. 2.Dept of Molecular Medicine and PathologyFaculty of Medical and Health Sciences, The University of AucklandAucklandNew Zealand
  3. 3.Institute of Molecular BioSciencesMassey UniversityPalmerston NorthNew Zealand
  4. 4.AgResearch LtdPalmerston NorthNew Zealand

Personalised recommendations