Molecular and Cellular Biochemistry

, Volume 364, Issue 1–2, pp 115–129 | Cite as

Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway

  • Jie Cao
  • Dong-Ling Dai
  • Long Yao
  • Hui-Hong Yu
  • Bo Ning
  • Qin Zhang
  • Juan Chen
  • Wen-Hui Cheng
  • Wei ShenEmail author
  • Zhao-Xia YangEmail author


Accumulation of saturated fatty acids in the liver can cause nonalcoholic fatty liver disease (NAFLD). This study investigated saturated fatty acid induction of endoplasmic reticulum (ER) stress and apoptosis in human liver cells and the underlying causal mechanism. Human liver L02 and HepG2 cell lines were exposed to the saturated fatty acid sodium palmitate. MTT assay was used for cell viability, flow cytometry and Hoechst 33258 staining for apoptosis, RT-PCR for mRNA expression, and Western blot for protein expression. Silence of PRK-like ER kinase (PERK) expression in liver cells was through transient transfection of PERK shRNA. Treatment of L02 and HepG2 cells with sodium palmitate reduced cell viability through induction of apoptosis. Sodium palmitate also induced ER stress in the cells, indicated by upregulation of PERK phosphorylation and expression of BiP, ATF4, and CHOP proteins. Sodium palmitate had little effect on activating XBP-1, a common target of the other two canonical sensors of ER stress, ATF6, and IRE1. Knockdown of PERK gene expression suppressed the PERK/ATF4/CHOP signaling pathway during sodium palmitate-induced ER stress and significantly inhibited sodium palmitate-induced apoptosis in L02 and HepG2 cells. Saturated fatty acid-induced ER stress and apoptosis in these human liver cells were enacted through the PERK/ATF4/CHOP signaling pathway. Future study is warranted to investigate the role of these proteins in mediating saturated fatty acid-induced NAFLD in animal models.


Saturated fatty acid ER stress Apoptosis PERK expression 



7-Amino-actinomycin D


Activated transcription factor 4


Bicinchoninic acid


Binding immunoglobulin protein


Bovine serum albumin


Endoplasmic reticulum


Glucose-regulated protein 78


Free fatty acid


c-Jun NH2-terminal kinase




Nonalcoholic fatty liver disease


Nonalcoholic steatohepatitis


Phosphate-buffered saline


Protein kinase dependent on RNA


PKR-like ER kinase


Polyvinylidene difluoride




Tris-buffered saline


Triton X-100-TBS


Unfolded protein response


X-box-binding protein 1


C/EBP-homologous protein



Our study was supported by grants from the Natural Science Foundation of China (#30871160), the Natural Science Foundation of Chongqing, China (#CSTC-2008BB5404) and the Project of Medical Science and Technology of Chongqing (#2008-2-401). We sincerely thank the staff of the Department of Gastroenterology and Hepatology at the Second Affiliated Hospital of Chongqing Medical University for their constant and unselfish help. We thank Ms. Yingxia Xiang and Mr. Jing Wang for their consistent and illuminating technical assistance. We also thank Medjaden Bioscience, Hong Kong, China, for assistance in the preparation of this manuscript.

Conflict of interest



  1. 1.
    Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231. doi: 10.1056/NEJMra011775 PubMedCrossRefGoogle Scholar
  2. 2.
    Clark JM, Diehl AM (2003) Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis. JAMA 289(22):3000–3004. doi: 10.1001/jama.289.22.3000 PubMedCrossRefGoogle Scholar
  3. 3.
    Duvnjak M, Lerotic I, Barsic N, Tomasic V, Virovic Jukic L, Velagic V (2007) Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol 13(34):4539–4550PubMedGoogle Scholar
  4. 4.
    Mehta K, Van Thiel DH, Shah N, Mobarhan S (2002) Nonalcoholic fatty liver disease: pathogenesis and the role of antioxidants. Nutr Rev 60(9):289–293PubMedCrossRefGoogle Scholar
  5. 5.
    Diehl AM, Li ZP, Lin HZ, Yang SQ (2005) Cytokines and the pathogenesis of non-alcoholic steatohepatitis. Gut 54(2):303–306. doi: 10.1136/gut.2003.024935 PubMedCrossRefGoogle Scholar
  6. 6.
    Wang D, Wei Y, Pagliassotti MJ (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147(2):943–951. doi: 10.1210/en.2005-0570 PubMedCrossRefGoogle Scholar
  7. 7.
    Wei Y, Wang D, Pagliassotti MJ (2007) Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem 303(1–2):105–113. doi: 10.1007/s11010-007-9461-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ (2010) Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab 298(5):E1027–1035. doi: 10.1152/ajpendo.00642.2009 PubMedCrossRefGoogle Scholar
  9. 9.
    Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281(17):12093–12101. doi: 10.1074/jbc.M510660200 PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66(2 Suppl 1):S102–S109. doi: 10.1212/ PubMedGoogle Scholar
  11. 11.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Natl Rev Mol Cell Biol 8(7):519–529. doi: 10.1038/nrm2199 CrossRefGoogle Scholar
  12. 12.
    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28PubMedCrossRefGoogle Scholar
  13. 13.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115(10):2656–2664. doi: 10.1172/JCI26373 PubMedCrossRefGoogle Scholar
  14. 14.
    Scheuner D, Vander Mierde D, Song B, Flamez D, Creemers JW, Tsukamoto K, Ribick M, Schuit FC, Kaufman RJ (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11(7):757–764. doi: 10.1038/nm1259 PubMedCrossRefGoogle Scholar
  15. 15.
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461. doi: 10.1126/science.1103160 PubMedCrossRefGoogle Scholar
  16. 16.
    Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, Sanyal AJ (2008) Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134(2):568–576. doi: 10.1053/j.gastro.2007.10.039 PubMedCrossRefGoogle Scholar
  17. 17.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 115(5):1343–1351. doi: 10.1172/JCI23621 PubMedGoogle Scholar
  18. 18.
    Nehra V, Angulo P, Buchman AL, Lindor KD (2001) Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig Dis Sci 46(11):2347–2352PubMedCrossRefGoogle Scholar
  19. 19.
    Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM (2007) Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Invest 87(9):927–937. doi: 10.1038/labinvest.3700603 PubMedCrossRefGoogle Scholar
  20. 20.
    Hardy S, Langelier Y, Prentki M (2000) Oleate activates phosphatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MB-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res 60(22):6353–6358PubMedGoogle Scholar
  21. 21.
    Lai E, Bikopoulos G, Wheeler MB, Rozakis-Adcock M, Volchuk A (2008) Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic beta-cells. Am J Physiol Endocrinol Metab 294(3):E540–E550. doi: 10.1152/ajpendo.00478.2007 PubMedCrossRefGoogle Scholar
  22. 22.
    Cao J, Yang ZX, Shen W (2011) Role of endoplasmic reticulum stress in palmitate sodium-induced apoptosis in steatotic L02 hepatocytes. J Third Mil Med Univ 33(18):1935–1938Google Scholar
  23. 23.
    Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 147(7):3398–3407. doi: 10.1210/en.2005-1494 PubMedCrossRefGoogle Scholar
  24. 24.
    Brewer JW, Diehl JA (2000) PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97(23):12625–12630. doi: 10.1073/pnas.220247197 PubMedCrossRefGoogle Scholar
  25. 25.
    Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ (2003) Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125(2):437–443PubMedCrossRefGoogle Scholar
  26. 26.
    Schattenberg JM, Wang Y, Rigoli RM, Koop DR, Czaja MJ (2004) CYP2E1 overexpression alters hepatocyte death from menadione and fatty acids by activation of ERK1/2 signaling. Hepatology 39(2):444–455. doi: 10.1002/hep.20067 PubMedCrossRefGoogle Scholar
  27. 27.
    Li Q, Liu Z, Guo J, Chen J, Yang P, Tian J, Sun J, Zong Y, Qu S (2009) Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response. Int J Mol Med 24(4):459–464PubMedGoogle Scholar
  28. 28.
    Wang H, Xue Z, Wang Q, Feng X, Shen Z (2008) Propofol protects hepatic L02 cells from hydrogen peroxide-induced apoptosis via activation of extracellular signal-regulated kinases pathway. Anesth Analg 107(2):534–540. doi: 10.1213/ane.0b013e3181770be9 PubMedCrossRefGoogle Scholar
  29. 29.
    Gu X, Li K, Laybutt DR, He ML, Zhao HL, Chan JC, Xu G (2010) Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci 87(23–26):724–732. doi: 10.1016/j.lfs.2010.10.012 PubMedCrossRefGoogle Scholar
  30. 30.
    Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514(2–3):122–128PubMedGoogle Scholar
  31. 31.
    Dai R, Chen R, Li H (2009) Cross-talk between PI3K/Akt and MEK/ERK pathways mediates endoplasmic reticulum stress-induced cell cycle progression and cell death in human hepatocellular carcinoma cells. Int J Oncol 34(6):1749–1757PubMedGoogle Scholar
  32. 32.
    Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252(1):1–15PubMedCrossRefGoogle Scholar
  33. 33.
    Schmitz I, Kirchhoff S, Krammer PH (2000) Regulation of death receptor-mediated apoptosis pathways. Int J Biochem Cell Biol 32(11–12):1123–1136PubMedCrossRefGoogle Scholar
  34. 34.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633PubMedCrossRefGoogle Scholar
  35. 35.
    Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274. doi: 10.1038/16729 PubMedCrossRefGoogle Scholar
  36. 36.
    McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259. doi: 10.1128/MCB.21.4.1249-1259.2001 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2012

Authors and Affiliations

  • Jie Cao
    • 1
  • Dong-Ling Dai
    • 2
  • Long Yao
    • 3
  • Hui-Hong Yu
    • 1
  • Bo Ning
    • 1
  • Qin Zhang
    • 4
  • Juan Chen
    • 1
  • Wen-Hui Cheng
    • 1
  • Wei Shen
    • 1
    Email author
  • Zhao-Xia Yang
    • 1
    Email author
  1. 1.Department of Gastroenterology and Hepatology2nd Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of Internal MedicineThe Children’s Hospital of ShenzhenShenzhenChina
  3. 3.Department of Intensive-Care MedicineThe Central Hospital of JiangjinChongqingChina
  4. 4.Department of Digestive DiseasesThe First People’s Hospital of LiangshanLiangshanChina

Personalised recommendations