Skip to main content
Log in

RETRACTED ARTICLE: Targeting of colorectal cancer growth, metastasis, and anti-apoptosis in BALB/c nude mice via APRIL siRNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 17 October 2022

This article has been updated

Abstract

A proliferation-inducing ligand (APRIL) is overexpressed in most tumor cells and tissues, especially in tumors of the alimentary system, such as colorectal cancer (CRC), gastric cancer, and liver cancer. RNA interference (RNAi) has been proved to be a powerful tool for gene knockdown and holds great promise for the treatment of cancer. In this study, the efficacy of RNAi targeting APRIL was analyzed via relevant experiments on human CRC xenografted in BALB/c nude mice. Both the mRNA and protein levels of APRIL were examined after intratumoral injection of APRIL small interfering RNA (siRNA). Meanwhile, pathological tools were utilized to observe the alterations on the aspects of proliferation, metastasis, apoptosis and cellular necrosis by means of detecting proliferating cell nuclear antigen, Ki-67, MMP-2, MMP-9, TIMP-3, TIMP-4, Bcl-2, Bax and Bcl-xL of CRC. In addition, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) and hematoxylin and eosin staining were also conducted to examine cell apoptosis and necrosis. It was found that grafted human colorectal tumor growth and metastasis were obviously inhibited while tumor cell apoptosis and necrosis were induced after in vivo APRIL siRNA injection into nude mice. The data indicated that silencing of the APRIL gene using RNAi may serve as a novel therapeutic strategy for treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Cohen AM, Minsky BD, Schilsky RL (1997) Cancer of the colon. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 5th edn. Lippincott-Raven, Philadelphia, pp 1144–1196

    Google Scholar 

  2. Parker SL, Tong T, Bolden S et al (1997) Cancer statistics. CA Cancer J Clin 47:5–27

    Article  CAS  PubMed  Google Scholar 

  3. Leichman CG, Flemming T, Muggia FM et al (1995) Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest oncology group study. J Clin Oncol 13:1303–1311

    Article  CAS  PubMed  Google Scholar 

  4. Marsh JC, Bertino JR, Katy KH et al (1991) The influence of drug interval on the effect of methotrexate and fluorouracil in the treatment of advanced colorectal cancer. J Clin Oncol 9:371–380

    Article  CAS  PubMed  Google Scholar 

  5. Hahne M, Kataoka T, Schröter M et al (1998) APRIL, a new ligand of the tumor necrosisfactor family, stimulates tumor cell growth. J Exp Med 188:1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pradet-Balade B, Medema JP, López-Fraga M et al (2002) An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK–APRIL fusion protein. EMBO J 21:5711–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth W, Wagenknecht B, Klumpp A et al (2001) APRIL, a new member of the tumor necrosis factor family, modulates death ligand-induced apoptosis. Cell Death Differ 8:403–410

    Article  CAS  PubMed  Google Scholar 

  8. Nishio M, Endo T, Tsukada N et al (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106:1012–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Endo T, Nishio M, Enzler T et al (2007) BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. 2002; Blood 109:703–710

    CAS  Google Scholar 

  10. Novak AJ, Bram RJ, Kay NE et al (2002) Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 100:2973–2979

    Article  CAS  PubMed  Google Scholar 

  11. Rennert P, Schneider P, Cachero TG et al (2000) A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 192:1677–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelly K, Manos E, Jensen G et al (2000) APRIL/TRDL-1, a tumor necrosis factor-like ligand, stimulates cell death. Cancer Res 60:1021–1027

    CAS  PubMed  Google Scholar 

  13. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  14. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  15. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes 15:188–200

    Article  CAS  Google Scholar 

  16. Zhang L, Gao LF, Li Y et al (2008) Effects of plasmid-based Stat3-specific short hairpin RNA and GRIM-19 on PC-3M tumor cell growth. Clin Cancer Res 14:559–568

    Article  CAS  PubMed  Google Scholar 

  17. Takei Y, Nemoto T, Mu P et al (2008) In vivo silencing of a molecular target by short interfering RNA electroporation: tumor vascularization correlates to delivery efficiency. Mol Cancer Ther 7:211–221

    Article  CAS  PubMed  Google Scholar 

  18. Singh RP, Tyagi A, Sharma G et al (2008) Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clin Cancer Res 14:300–308

    Article  CAS  PubMed  Google Scholar 

  19. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  20. Ding W, Wang J, Sun B et al (2009) APRIL knockdown suppresses migration and invasion of human colon carcinoma cells. Clin Biochem 42:1694–1698

    Article  CAS  PubMed  Google Scholar 

  21. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  22. Mackay F, Tangye SG (2004) The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr Opin Pharmacol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  23. Klein B, Tarte K, Jourdan M et al (2003) Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol 78:106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moreaux J, Legouffe E, Jourdan E et al (2004) BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexa-methasone. Blood 103:3148–3157

    Article  CAS  PubMed  Google Scholar 

  25. Tsurimoto T (1998) PCNA, a multifunctional ring on DNA. Biochim Biophys Acta 1443:23–39

    Article  CAS  PubMed  Google Scholar 

  26. Bravo R, Frank R, Blundell PA et al (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 326:515–517

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Meng R, Fu C et al (2002) Gene expression significance of h-catenin, p53 and PCNA in PJS polyposis. Zhonghua Wai Ke Za Zhi 40:104–106

    PubMed  Google Scholar 

  28. Suh N, Paul S, Hao X et al (2007) Pterostilbene, an active constituent of blueberries, suppresses aberrant cryptfoci formation in the azoxymethane-induced colon carcinogenesis modelin rats. Clin Cancer Res 13:350–355

    Article  CAS  PubMed  Google Scholar 

  29. Kohno H, Suzuki R, Curini M et al (2006) Dietary administration with prenyloxycoumarins, auraptene and collinin, inhibits colitis-related colon carcinogenesis in mice. Int J Cancer 118:2936–2942

    Article  CAS  PubMed  Google Scholar 

  30. Lim DY, Tyner AL, Park JB et al (2005) Inhibition of colon cancer cell proliferation by the dietary compound conjugated linoleic acid is mediated by the CDK inhibitor p21CIP1/WAF1. J Cell Physiol 205:107–113

    Article  CAS  PubMed  Google Scholar 

  31. Nomoto H, Iigo M, Hamada H et al (2004) Chemoprevention of colorectal cancer by grape seed proanthocyanidin is accompanied by a decrease in proliferation and increase in apoptosis. Nutr Cancer 49:81–88

    Article  CAS  PubMed  Google Scholar 

  32. Jansen RL, Hupperets PS, Arends JW et al (1998) MIB-1 labelling index is an independent prognostic marker in primary breast cancer. Br J Cancer 78:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perry A, Stafford SL, Scheithauer BW et al (1998) The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer 82:2262–2269

    Article  CAS  PubMed  Google Scholar 

  34. Mashal RD, Lester S, Corless C et al (1996) Expression of cell cycle regulated proteins in prostate cancer. Cancer Res 56:4159–4163

    CAS  PubMed  Google Scholar 

  35. Gerdes J, Dallenbach F, Lennert K et al (1984) Growth fractions in malignant non-Hodgkin’s lymphomas (NHL) as determined in situ with the monoclonal antibody Ki-67. Hematol Oncol 2:365–371

    Article  CAS  PubMed  Google Scholar 

  36. Williams GT, Smith CA (1993) Molecular regulation of apoptosis: genetic controls on cell death. Cell 74:777–779

    Article  CAS  PubMed  Google Scholar 

  37. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  38. Matrisian LM (1999) Cancer biology: extracellular proteinases in malignancy. Curr Biol 9:R776–R778

    Article  CAS  PubMed  Google Scholar 

  39. Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–S51

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karadag A, Ogbureke KU, Fedarko NS et al (2004) Bone sialoprotein, matrix metalloproteinase 2, and (v)h3 integrin in osteotropic cancer cell invasion. J Natl Cancer Inst 96:956–965

    Article  CAS  PubMed  Google Scholar 

  42. Deryugina EI, Bourdon MA, Luo GX et al (1997) Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci 110:2473–2482

    Article  CAS  PubMed  Google Scholar 

  43. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  44. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 7:1–2

    Google Scholar 

  45. Leco KJ, Khokha R, Pavloff N et al (1994) Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem 269:9352–9360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Key Subject of Jiangsu Province (XK20070302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huimin Wang.

Additional information

Jingchun Wang and Weifeng Ding contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2011_1151_MOESM1_ESM.tif

Supplementary Figure 1a SW480 cells transfected with shAPRIL had lower growing velocity in nude mice (n = 5). a The tendency of tumor growth in different groups. Firstly, SW480 cells were transfected with shAPRIL (sh637 and sh1750) and the pGC vector. After cells were subcutaneously implanted into nude mice, tumor volume was monitored regularly (TIFF 680 kb)

11010_2011_1151_MOESM2_ESM.tif

Supplementary Figure 1b SW480 cells transfected with shAPRIL had lower growing velocity in nude mice (n = 5). b Tumors images from nude mice (A, sh637 transfected group; B, sh1750 transfected group; C, pGC vector transfected group; D, SW480 cells untransfected group) (TIFF 1721 kb)

About this article

Cite this article

Wang, J., Ding, W., Sun, B. et al. RETRACTED ARTICLE: Targeting of colorectal cancer growth, metastasis, and anti-apoptosis in BALB/c nude mice via APRIL siRNA. Mol Cell Biochem 363, 1–10 (2012). https://doi.org/10.1007/s11010-011-1151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1151-4

Keywords

Navigation