A detailed thermodynamic profile of cyclopentyl and isopropyl derivatives binding to CK2 kinase

  • Takayoshi KinoshitaEmail author
  • Yusuke Sekiguchi
  • Harumi Fukada
  • Tetsuko Nakaniwa
  • Toshiji Tada
  • Shinya Nakamura
  • Kazuo Kitaura
  • Hiroaki Ohno
  • Yamato Suzuki
  • Akira Hirasawa
  • Isao NakanishiEmail author
  • Gozoh Tsujimoto


The detailed understanding of the molecular features of a ligand binding to a target protein, facilitates the successful design of potent and selective inhibitors. We present a case study of ATP-competitive kinase inhibitors that include a pyradine moiety. These compounds have similar chemical structure, except for distinct terminal hydrophobic cyclopentyl or isopropyl groups, and block kinase activity of casein kinase 2 subunit α (CK2α), which is a target for several diseases, such as cancer and glomerulonephritis. Although these compounds display similar inhibitory potency against CK2α, the crystal structures reveal that the cyclopentyl derivative gains more favorable interactions compared with the isopropyl derivative, because of the additional ethylene moiety. The structural observations and biological data are consistent with the thermodynamic profiles of these inhibitors in binding to CK2α, revealing that the enthalpic advantage of the cyclopentyl derivative is accompanied with a lower entropic loss. Computational analyses indicated that the relative enthalpic gain of the cyclopentyl derivative arises from an enhancement of a wide range of van der Waals interactions from the whole complex. Conversely, the relative entropy loss of the cyclopentyl derivative arises from a decrease in the molecular fluctuation and higher conformational restriction in the active site of CK2α. These structural insights, in combination with thermodynamic and computational observations, should be helpful in developing potent and selective CK2α inhibitors.


CK2 Isothermal titration calorimeter Crystal structure Molecular dynamics Entropy/enthalpy compensation 



These studies are supported by the Program of Fundamental Studies in Health Science of the National Institute of Biochemical Innovation (NIBIO). The synchrotron radiation experiments were done at the BL6A and BL17A stations in the Photon Factory, and at the BL44XU station in SPring-8 faculty with MX225-HE (Rayonix), which is financially supported by Academia Since and National Synchrotron Radiation Research Center (Taiwan, ROC).


  1. 1.
    Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002PubMedCrossRefGoogle Scholar
  2. 2.
    Terasaka T, Kinoshita T, Kuno M, Nakanishi I (2004) A highly potent non-nucleotide adenosine deaminase inhibitor: efficient drug discovery by intentional lead hybridization. J Am Chem Soc 126:34–35PubMedCrossRefGoogle Scholar
  3. 3.
    Terasaka T, Ohkumura H, Tsuji K, Kato T, Nakanishi I, Kinoshita T, Kato Y, Kuno M, Seki N, Naoe Y, Inoue T, Tanaka K, Nakamura K (2004) Structure-based design and synthesis of non-nucleoside, potent, and orally bioavailable adenosine deaminase inhibitors. J Med Chem 47:2728–2731PubMedCrossRefGoogle Scholar
  4. 4.
    Kosugi T, Nakanishi I, Kitaura K (2009) Binding free energy calculation of adenosine deaminase inhibitor and the effect of methyl substitution in inhibitors. J Chem Inf Model 49:615–622PubMedCrossRefGoogle Scholar
  5. 5.
    Gerlach C, Smolinski M, Steuber H, Sotriffer CA, Heine A, Hangauer DG, Klebe G (2007) Thermodynamic inhibition profile of a cyclopentyl and a cyclohexyl derivatives towards thrombin: the same but for different reasons. Angew Chem Int Ed 46:8511–8514CrossRefGoogle Scholar
  6. 6.
    Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class. Drug Discov Today 13:869–874PubMedCrossRefGoogle Scholar
  7. 7.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2alfa. FASEB J 17:349–368PubMedCrossRefGoogle Scholar
  8. 8.
    Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331PubMedCrossRefGoogle Scholar
  9. 9.
    Mazzorana M, Pinna LA, Battistutta R (2008) A structural insight into CK2 inhibition. Mol Cell Biochem 316:57–62PubMedCrossRefGoogle Scholar
  10. 10.
    Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–44PubMedGoogle Scholar
  11. 11.
    Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K (2008) Protein kinase CK2—a key suppressor of apoptosis. Adv Enzyme Regul 48:179–187PubMedCrossRefGoogle Scholar
  12. 12.
    Yamada M, Katsuma S, Adachi T, Hirasawa A, Shiojima S, Kadowaki T, Okuno Y, Koshimizu TA, Fujii S, Sekiya Y, Miyamoto Y, Tamura M, Yumura W, Nihei H, Kobayashi M, Tsujimoto G (2005) Inhibition of protein kinase CK2 prevents the progression of Glomerulonephritis. Proc Natl Acad Sci USA 102:7736–7741PubMedCrossRefGoogle Scholar
  13. 13.
    Cozza G, Bonvini P, Zorzi E, Poletto G, Pagano MA, Sarno S, Sonellaa-Deana A, Zagotto G, Rosolen A, Pinna LA, Meggio F, Moro S (2006) Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem 49:2363–2366PubMedCrossRefGoogle Scholar
  14. 14.
    Raaf J, Klopffleisch K, Issinger OG, Niefind K (2008) The catalytic subunit of human protein kinase CK2 structurally deviates from its maize homologue in complexed with the nucleotide competitive inhibitor emodin. J Mol Biol 377:1–8PubMedCrossRefGoogle Scholar
  15. 15.
    Critchfield JW, Coligan JE, Folks TM, Butera ST (1997) Casein kinase II is a selective target of HIV-1 transcriptional inhibitors. Proc Natl Acad Sci USA 94:6110–6115PubMedCrossRefGoogle Scholar
  16. 16.
    Sarno S, Reddy H, Meggio F, Ruzzene M, Davies SP, Donella-Deana A, Shugar D, Pinna LA (2001) Selectivity of 4, 5, 6, 7-tetrabromobenzotriazole, an ATP site-directed inhibitor of protein kinase CK2. FEBS Lett 496:44–48PubMedCrossRefGoogle Scholar
  17. 17.
    Vangrevelinghe E, Zimmermann K, Schoepfer J, Portmann R, Fabbro D, Furet P (2003) Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J Med Chem 46:2656–2662PubMedCrossRefGoogle Scholar
  18. 18.
    Zandomeni R, Zandomeni MC, Shugar D, Weinmann R (1986) Casein kinase type II is involved in the inhibition by 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem 261:3414–3419PubMedGoogle Scholar
  19. 19.
    Suzuki Y, Cluzeau J, Hara T, Hirasawa A, Tsujimoto G, Oishi S, Ohno H, Fujii N (2008) Structure–activity relationship of pyrazine-based CK2 inhibitors: synthesis and evaluation of 2, 6-disubstituted pyrazines and 4.6-disubstituted pyrimidines. Arch Pharm 341:554–561CrossRefGoogle Scholar
  20. 20.
    Nie Z, Perretta C, Erickson P, Margosiak S, Lu J, Averill A, Almassy R, Chu S (2008) Structure-based design and synthesis of novel macrocyclic pyrazolo[1,5-a][1,3,5]triazine compounds as potent inhibitors of protein kinase CK2 and their anticancer activities. Bioorg Med Chem Lett 18:619–623PubMedCrossRefGoogle Scholar
  21. 21.
    Raaf J, Brunstein E, Issinger OG, Niefind K (2008) The Ck2 alpha/CK2 beta interface of human protein kinase CK2 harbors a binding pocket for small molecules. Chem Biol 15:111–117PubMedCrossRefGoogle Scholar
  22. 22.
    Ermakova I, Boldyreff B, Issinger OG, Niefind K (2003) Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit. J Mol Biol 330:925–934PubMedCrossRefGoogle Scholar
  23. 23.
    Niefind K, Yde CW, Ermakowa I, Issinger OG (2007) Evolved to be active: sulfate ions define substrate recognition sites of CK2alpha and emphasize its exceptional role within the CMGC family of eukaryotic protein kinases. J Mol Biol 370:427–438PubMedCrossRefGoogle Scholar
  24. 24.
    Sekiguchi Y, Tetsuko N, Kinoshita T, Nakanishi I, Kitaura K, Hirasawa A, Tsujimoto G, Tada T (2009) Structural insight into human CK2alfa in complex with the potent inhibitor ellagic acid. Bioorg Med Chem Lett 19:2920–2923PubMedCrossRefGoogle Scholar
  25. 25.
    Otwinoski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Method in enzymology, vol 276. Academic press, New York, pp 307–326Google Scholar
  26. 26.
    Vagin A, Teplyakov A (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr Crystallogr D 56:1622–1624CrossRefGoogle Scholar
  27. 27.
    Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crytallogr D Biol Crystallogr 50:760–763CrossRefGoogle Scholar
  28. 28.
    Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75:187–205PubMedCrossRefGoogle Scholar
  29. 29.
    Sturgeon JB, Laird BB (2000) Symplectic algorithm for constant-pressure molecular dynamics using a Nose-Poincare thermostat. J Chem Phys 112:3474–3482CrossRefGoogle Scholar
  30. 30.
    Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J Comput Chem 17:587–615Google Scholar
  31. 31.
    Ryckaert TA, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equation of motion of a system with constrains: molecular dynamics of n-alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  32. 32.
    Labute P (2008) The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem 29:1693–1698PubMedCrossRefGoogle Scholar
  33. 33.
    Baum B, Mohamed M, Zayed M, Gerlach C, Heine A, Hangauer D, Klebe G (2009) More than a simple lipophilic contact: a detailed thermodynamic analysis of nonbasic residues in the S1 pocket of thrombin. J Mol Biol 390:56–69PubMedCrossRefGoogle Scholar
  34. 34.
    Dunitz JD (1994) The entropic cost of bound water in crystals and biomolecules. Science 264:670PubMedCrossRefGoogle Scholar
  35. 35.
    Chang CA, Chen W, Gilson MK (2007) Ligand conformational entropy and protein binding. Proc Natl Acad Sci USA 104:1534–1539PubMedCrossRefGoogle Scholar
  36. 36.
    Fedorov DG, Ishimura K, Ishida T, Kitaura K, Pulay P, Nagase S (2007) Accuracy of the three-body fragment molecular orbital method applied to Moller-Plesset perturbation theory. J Comput Chem 28:1476–1484PubMedCrossRefGoogle Scholar
  37. 37.
    Ford DM (2005) Enthalpy–entropy compensation is not a general feature of weak association. J Am Chem Soc 127:16167–16170PubMedCrossRefGoogle Scholar
  38. 38.
    Starikov EB, Norden B (2007) Enthalpy–entropy compensation: a phantom or something useful? J Phys Chem B 111:14431–14435PubMedCrossRefGoogle Scholar
  39. 39.
    Kawasaki Y, Chufan EE, Lafont V, Hidaka K, Kiso Y, Amzel LM, Freire E (2010) How much binding affinity can be gained by filling a cavity? Chem Biol Drug Des 75:143–151PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor JD, Ababou A, Fawaz RR, Hobbs CJ, Williams MA, Ladbury JE (2008) Structure, dynamics, and binding thermodynamic of the v-Src SH2 domain: implications for drug design. Proteins 73:929–940PubMedCrossRefGoogle Scholar
  41. 41.
    Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Amzel MA, Freire E (2007) Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem Biol Drug Des 69:413–422PubMedCrossRefGoogle Scholar
  42. 42.
    Freire E (2009) A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des 74:468–472PubMedCrossRefGoogle Scholar
  43. 43.
    Liu C, Wrobleski ST, Lin J, Ahmed G, Metzger A, Wityak J, Gillooly KM, Shuster DJ, McIntyre KW, Pitt S, Shen DR, Zhang RF, Zhang H, Doweyko AM, Diller D, Henderson I, Barrish JC, Dodd JH, Schieven GL, Leftheris K (2005) 5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38a MAP kinase. J Med Chem 48:6261–6270PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Takayoshi Kinoshita
    • 1
    • 5
    Email author
  • Yusuke Sekiguchi
    • 1
  • Harumi Fukada
    • 2
  • Tetsuko Nakaniwa
    • 1
  • Toshiji Tada
    • 1
  • Shinya Nakamura
    • 3
  • Kazuo Kitaura
    • 4
  • Hiroaki Ohno
    • 4
  • Yamato Suzuki
    • 4
  • Akira Hirasawa
    • 4
  • Isao Nakanishi
    • 3
    • 6
    Email author
  • Gozoh Tsujimoto
    • 4
  1. 1.Graduate School of ScienceOsaka Prefecture UniversitySakaiJapan
  2. 2.Graduate School of Life and Environmental ScienceOsaka Prefecture UniversitySakaiJapan
  3. 3.Department of Pharmaceutical SciencesKinki UniversityHigashi-osakaJapan
  4. 4.Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  5. 5.Department of Biological science, Graduate School of ScienceOsaka Prefecture UniversitySakaiJapan
  6. 6.Computational Drug Design and Discovery, Department of Pharmaceutical SciencesKinki UniversityHigashi-osakaJapan

Personalised recommendations