Nutritional modulation of CK2 in Saccharomyces cerevisiae: regulating the activity of a constitutive enzyme

  • Farida Tripodi
  • Claudia Cirulli
  • Veronica Reghellin
  • Luca Brambilla
  • Oriano Marin
  • Paola Coccetti


CK2 is a highly conserved protein kinase involved in different cellular processes, which shows a higher activity in actively proliferating mammalian cells and in various types of cancer and cancer cell lines. We recently demonstrated that CK2 activity is strongly influenced by growth rate in yeast cells as well. Here, we extend our previous findings and show that, in cells grown in either glucose or ethanol-supplemented media, CK2 presents no alteration in Km for both the ATP and the peptide substrate RRRADDSDDDDD, while a significant increase in V max is observed. In chemostat-grown cells, no difference of CK2 activity was observed in cells grown at the same dilution rate in media supplemented with either ethanol or glucose, excluding the contribution of carbon metabolism on CK2 activity. By using the eIF2β-derived peptide, which can be phosphorylated by the holoenzyme but not by the free catalytic subunits, we show that the holoenzyme activity requires the concurrent presence of both β and β′ encoding genes. Finally, conditions of nitrogen deprivation leading to a G0-like arrest result in a decrease of total CK2 activity, but have no effect on the activity of the holoenzyme. These findings newly indicate a regulatory role of β and β′ subunits of CK2 in the nutrient response.


Saccharomyces cerevisiae Growth rate Nitrogen starvation Protein kinase CK2 CK2 Activity CK2 Holoenzyme 



We thank Prof. Lilia Alberghina and Prof. Marco Vanoni for encouragement and support and Neil Campbell for language editing. We gratefully acknowledge the technical assistance of Dr. Maria Patrizia Schiappelli for peptide synthesis. This study was supported by a grant to P.C. (FAR 2008).


  1. 1.
    Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81PubMedCrossRefGoogle Scholar
  2. 2.
    Busti S, Coccetti P, Alberghina L, Vanoni M (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors 10(6):6195–6240CrossRefGoogle Scholar
  3. 3.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368PubMedCrossRefGoogle Scholar
  4. 4.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369(Pt 1):1–15PubMedCrossRefGoogle Scholar
  5. 5.
    Padmanabha R, Chen-Wu JL, Hanna DE, Glover CV (1990) Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol 10(8):4089–4099PubMedGoogle Scholar
  6. 6.
    Glover CV, Bidwai AP, Reed JC (1994) Structure and function of Saccharomyces cerevisiae casein kinase II. Cell Mol Biol Res 40(5–6):481–488PubMedGoogle Scholar
  7. 7.
    Bidwai AP, Reed JC, Glover CV (1995) Cloning and disruption of CKB1, the gene encoding the 38-kDa beta subunit of Saccharomyces cerevisiae casein kinase II (CKII). Deletion of CKII regulatory subunits elicits a salt-sensitive phenotype. J Biol Chem 270(18):10395–10404PubMedCrossRefGoogle Scholar
  8. 8.
    Hanna DE, Rethinaswamy A, Glover CV (1995) Casein kinase II is required for cell cycle progression during G1 and G2/M in Saccharomyces cerevisiae. J Biol Chem 270(43):25905–25914PubMedCrossRefGoogle Scholar
  9. 9.
    Bandhakavi S, McCann RO, Hanna DE, Glover CV (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278(5):2829–2836PubMedCrossRefGoogle Scholar
  10. 10.
    Russo GL, van den Bos C, Sutton A, Coccetti P, Baroni MD, Alberghina L, Marshak DR (2000) Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Biochem J 351(Pt 1):143–150PubMedCrossRefGoogle Scholar
  11. 11.
    Coccetti P, Rossi RL, Sternieri F, Porro D, Russo GL, di Fonzo A, Magni F, Vanoni M, Alberghina L (2004) Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S-Cdk kinase activity in Saccharomyces cerevisiae. Mol Microbiol 51(2):447–460PubMedCrossRefGoogle Scholar
  12. 12.
    Coccetti P, Zinzalla V, Tedeschi G, Russo GL, Fantinato S, Marin O, Pinna LA, Vanoni M, Alberghina L (2006) Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells. Biochem Biophys Res Commun 346(3):786–793PubMedCrossRefGoogle Scholar
  13. 13.
    Coccetti P, Tripodi F, Tedeschi G, Nonnis S, Marin O, Fantinato S, Cirulli C, Vanoni M, Alberghina L (2008) The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 7(10):1391–1401PubMedCrossRefGoogle Scholar
  14. 14.
    Tripodi F, Zinzalla V, Vanoni M, Alberghina L, Coccetti P (2007) In CK2 inactivated cells the cyclin dependent kinase inhibitor Sic1 is involved in cell-cycle arrest before the onset of S phase. Biochem Biophys Res Commun 359(4):921–927PubMedCrossRefGoogle Scholar
  15. 15.
    Prowald K, Fischer H, Issinger OG (1984) Enhanced casein kinase II activity in human tumour cell cultures. FEBS Lett 176(2):479–483PubMedCrossRefGoogle Scholar
  16. 16.
    Münstermann U, Fritz G, Seitz G, Lu YP, Schneider HR, Issinger OG (1990) Casein kinase II is elevated in solid human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189(2):251–257PubMedCrossRefGoogle Scholar
  17. 17.
    Sommercorn J, Mulligan JA, Lozeman FJ, Krebs EG (1987) Activation of casein kinase II in response to insulin and to epidermal growth factor. Proc Natl Acad Sci USA 84(24):8834–8838PubMedCrossRefGoogle Scholar
  18. 18.
    Tripodi F, Cirulli C, Reghellin V, Marin O, Brambilla L, Schiappelli MP, Porro D, Vanoni M, Alberghina L, Coccetti P (2010) CK2 activity is modulated by growth rate in Saccharomyces cerevisiae. Biochem Biophys Res Commun 398(1):44–50PubMedCrossRefGoogle Scholar
  19. 19.
    Porro D, Brambilla L, Alberghina L (2003) Glucose metabolism and cell size in continuous cultures of Saccharomyces cerevisiae. FEMS Microbiol Lett 229(2):165–171PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi RL, Zinzalla V, Mastriani A, Vanoni M, Alberghina L (2005) Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by the carbon source in budding yeast. Cell Cycle 4(12):1798–1807PubMedCrossRefGoogle Scholar
  21. 21.
    Marin O, Meggio F, Pinna LA (1994) Design and synthesis of two new peptide substrates for the specific and sensitive monitoring of casein kinases-1 and -2. Biochem Biophys Res Commun 198(3):898–905PubMedCrossRefGoogle Scholar
  22. 22.
    Poletto G, Vilardell J, Marin O, Pagano MA, Cozza G, Sarno S, Falqués A, Itarte E, Pinna LA, Meggio F (2008) The regulatory beta subunit of protein kinase CK2 contributes to the recognition of the substrate consensus sequence. A study with an eIF2 beta-derived peptide. Biochemistry 47(32):8317–8325PubMedCrossRefGoogle Scholar
  23. 23.
    Gancedo C, Serrano R (1989) Energy yielding metabolism. In: Rose AH and Harrison JS (eds) The yeasts, 2nd edn, vol 3. Academic Press, New YorkGoogle Scholar
  24. 24.
    DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686PubMedCrossRefGoogle Scholar
  25. 25.
    Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI (1999) A sampling of the yeast proteome. Mol Cell Biol 19(11):7357–7368PubMedGoogle Scholar
  26. 26.
    Kolkman A, Olsthoorn MM, Heeremans CE, Heck AJ, Slijper M (2005) Comparative proteome analysis of Saccharomyces cerevisiae grown in chemostat cultures limited for glucose or ethanol. Mol Cell Proteomics 4(1):1–11PubMedGoogle Scholar
  27. 27.
    Regev-Rudzki N, Battat E, Goldberg I, Pines O (2009) Dual localization of fumarase is dependent on the integrity of the glyoxylate shunt. Mol Microbiol 72(2):297–306PubMedCrossRefGoogle Scholar
  28. 28.
    Schöler A, Schüller HJ (1993) Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae. Curr Genet 23(5–6):375–381PubMedCrossRefGoogle Scholar
  29. 29.
    Vanoni M, Johnson SP (1991) Phosphorylation of ribosomal protein S10 is dispensable for initiation of DNA replication and bud emergence in Saccharomyces cerevisiae. Eur J Cell Biol 55(1):179–182PubMedGoogle Scholar
  30. 30.
    Kubiński K, Domańska K, Sajnaga E, Mazur E, Zieliński R, Szyszka R (2007) Yeast holoenzyme of protein kinase CK2 requires both beta and beta′ regulatory subunits for its activity. Mol Cell Biochem 295(1–2):229–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Farida Tripodi
    • 1
  • Claudia Cirulli
    • 1
  • Veronica Reghellin
    • 1
    • 3
  • Luca Brambilla
    • 1
  • Oriano Marin
    • 2
  • Paola Coccetti
    • 1
  1. 1.Dipartimento di Biotecnologie e BioscienzeUniversità di Milano-BicoccaMilanItaly
  2. 2.Dipartimento di Chimica BiologicaUniversità di PadovaPaduaItaly
  3. 3.INGM Istituto Nazionale Genetica MolecolareMilanItaly

Personalised recommendations