Simulated colon fiber metabolome regulates genes involved in cell cycle, apoptosis, and energy metabolism in human colon cancer cells

  • Heli Putaala
  • Harri Mäkivuokko
  • Kirsti Tiihonen
  • Nina Rautonen


High level of dietary fiber has been epidemiologically linked to protection against the risk for developing colon cancer. The mechanisms of this protection are not clear. Fermentation of dietary fiber in the colon results in production of for example butyrate that has drawn attention as a chemopreventive agent. Polydextrose, a soluble fiber that is only partially fermented in colon, was fermented in an in vitro colon simulator, in which the conditions mimic the human proximal, ascending, transverse, and distal colon in sequence. The subsequent fermentation metabolomes were applied on colon cancer cells, and the gene expression changes studied. Polydextrose fermentation down-regulated gene ontology classes linked with cell cycle, and affected number of metabolically active cells. Furthermore, up-regulated effects on classes linked with apoptosis, with increased caspase 2 and 3 activity, implicate that polydextrose fermentation plays a role in induction of apoptosis in colon cancer cells. The up-regulated genes involved also key regulators of lipid metabolism, such as PPARα and PGC-1α. These results offer hypotheses for the mechanisms of two health benefits linked with consumption of dietary fiber, reducing risk of development of colon cancer, and dyslipidemia.


Colon cancer Fiber Microarray Polydextrose Simulation 



The authors wish to acknowledge Ilana Saarikko (Pharmatest Services Ltd) for contribution in the data analysis. Henna Röytiö (Danisco Health & Nutrition) is thanked for supplying unpublished data and PDX simulation samples.

Supplementary material

11010_2011_894_MOESM1_ESM.eps (854 kb)
Supplementary material 1 (EPS 854 kb)
11010_2011_894_MOESM2_ESM.doc (34 kb)
Supplementary material 2 (DOC 34 kb)
11010_2011_894_MOESM3_ESM.eps (442 kb)
Supplementary material 3 (EPS 443 kb)
11010_2011_894_MOESM4_ESM.eps (2.4 mb)
Supplementary material 4 (EPS 2429 kb)
11010_2011_894_MOESM5_ESM.eps (1.7 mb)
Supplementary material 5 (EPS 1711 kb)
11010_2011_894_MOESM6_ESM.eps (1.7 mb)
Supplementary material 6 (EPS 1742 kb)
11010_2011_894_MOESM7_ESM.eps (1.5 mb)
Supplementary material 7 (EPS 1578 kb)
11010_2011_894_MOESM8_ESM.eps (665 kb)
Supplementary material 8 (EPS 665 kb)
11010_2011_894_MOESM9_ESM.doc (34 kb)
Supplementary material 9 (DOC 35 kb)


  1. 1.
    Labianca R, Beretta GD, Kildani B, Milesi L, Merlin F, Mosconi S, Pessi MA, Prochilo T, Quadri A, Gatta G, de Braud F, Wils J (2010) Colon cancer. Crit Rev Oncol Hematol 74(2):106–133PubMedCrossRefGoogle Scholar
  2. 2.
    McGarr SE, Ridlon JM, Hylemon PB (2005) Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol 39(2):98–109PubMedGoogle Scholar
  3. 3.
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119. doi: 10.1111/j.1365-2036.2007.03562.x PubMedCrossRefGoogle Scholar
  4. 4.
    Rose DJ, DeMeo MT, Keshavarzian A, Hamaker BR (2007) Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern. Nutr Rev 65(2):51–62PubMedCrossRefGoogle Scholar
  5. 5.
    Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M (2009) Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 682(1):39–53PubMedCrossRefGoogle Scholar
  6. 6.
    Dongowski G (2007) Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro. Food Chem 104(1):390–397. doi: 10.1016/j.foodchem.2006.11.053 CrossRefGoogle Scholar
  7. 7.
    Zacherl C, Eisner P, Engel K-H (2011) In vitro model to correlate viscosity and bile acid-binding capacity of digested water-soluble and insoluble dietary fibres. Food Chem 126(2):423–428. doi: 10.1016/j.foodchem.2010.10.113 CrossRefGoogle Scholar
  8. 8.
    van Bennekum AM, Nguyen DV, Schulthess G, Hauser H, Phillips MC (2005) Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br J Nutr 94(3):331–337. doi: 10.1079/bjn20051498 PubMedCrossRefGoogle Scholar
  9. 9.
    Jenkins DJ, Kendall CW, Axelsen M, Augustin LS, Vuksan V (2000) Viscous and nonviscous fibres, nonabsorbable and low glycaemic index carbohydrates, blood lipids and coronary heart disease. Curr Opin Lipidol 11(1):49–56PubMedCrossRefGoogle Scholar
  10. 10.
    Drozdowski LA, Reimer RA, Temelli F, Bell RC, Vasanthan T, Thomson ABR (2010) [beta]-Glucan extracts inhibit the in vitro intestinal uptake of long-chain fatty acids and cholesterol and down-regulate genes involved in lipogenesis and lipid transport in rats. J Nutr Biochem 21(8):695–701. doi: 10.1016/j.jnutbio.2009.04.003 PubMedCrossRefGoogle Scholar
  11. 11.
    Schauber J, Weiler F, Gostner A, Melcher R, Kudlich T, Lhrs H, Scheppach W (2006) Human rectal mucosal gene expression after consumption of digestible and non-digestible carbohydrates. Mol Nutr Food Res 50(11):1006–1012PubMedCrossRefGoogle Scholar
  12. 12.
    Vanhoutvin SA, Troost FJ, Hamer HM, Lindsey PJ, Koek GH, Jonkers DM, Kodde A, Venema K, Brummer RJ (2009) Butyrate-induced transcriptional changes in human colonic mucosa. PLoS ONE 4(8):e6759PubMedCrossRefGoogle Scholar
  13. 13.
    van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschoten M, Brummer RJ, Kleerebezem M (2010) Microbes and health sackler colloquium: human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1000079107
  14. 14.
    Bing W, Bobe G, Lapres JJ, Bourquin LD (2009) Dietary carbohydrate source alters gene expression profile of intestinal epithelium in mice. Nutr Cancer 61(1):146–155CrossRefGoogle Scholar
  15. 15.
    Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25(1):49–62PubMedCrossRefGoogle Scholar
  16. 16.
    Pool-Zobel BL, Selvaraju V, Sauer J, Kautenburger T, Kiefer J, Richter KK, Soom M, Wolfl S (2005) Butyrate may enhance toxicological defence in primary, adenoma and tumor human colon cells by favourably modulating expression of glutathione S-transferases genes, an approach in nutrigenomics. Carcinogenesis 26(6):1064–1076PubMedCrossRefGoogle Scholar
  17. 17.
    Beyer-Sehlmeyer G, Glei M, Hartmann E, Hughes R, Persin C, Bohm V, Rowland I, Schubert R, Jahreis G, Pool-Zobel BL (2003) Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. Br J Nutr 90(6):1057–1070PubMedCrossRefGoogle Scholar
  18. 18.
    Stowell JD (2009) Polydextrose. In: Sungsoo S, Samuel P (eds) Fiber ingredients, food applications and health benefits. CRC Press, Boca Raton, pp 173–201Google Scholar
  19. 19.
    Makivuokko H, Nurmi J, Nurminen P, Stowell J, Rautonen N (2005) In vitro effects on polydextrose by colonic bacteria and caco-2 cell cyclooxygenase gene expression. Nutr Cancer 52(1):94–104PubMedCrossRefGoogle Scholar
  20. 20.
    Nurmi JT, Puolakkainen PA, Rautonen NE (2005) Intron 1 retaining cyclooxygenase 1 splice variant is induced by osmotic stress in human intestinal epithelial cells. Prostaglandins Leukot Essent Fatty Acids 73(5):343–350PubMedCrossRefGoogle Scholar
  21. 21.
    Team RDC (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  22. 22.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80PubMedCrossRefGoogle Scholar
  23. 23.
    Langsrud O (2002) 50–50 multivariate analysis of variance for collinear responses. J R Stat Soc D 51:305–317CrossRefGoogle Scholar
  24. 24.
    Davis CD, Milner JA (2009) Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem 20(10):743–752PubMedCrossRefGoogle Scholar
  25. 25.
    Yang SY, Sales KM, Fuller B, Seifalian AM, Winslet MC (2009) Apoptosis and colorectal cancer: implications for therapy. Trends Mol Med 15(5):225–233. doi: 10.1016/j.molmed.2009.03.003 PubMedCrossRefGoogle Scholar
  26. 26.
    Pajak B, Gajkowska B, Orzechowski A (2009) Sodium butyrate sensitizes human colon adenocarcinoma COLO 205 cells to both intrinsic and TNF-alpha-dependent extrinsic apoptosis. Apoptosis 14(2):203–217. doi: 10.1007/s10495-008-0291-9 PubMedCrossRefGoogle Scholar
  27. 27.
    Vakifahmetoglu-Norberg H, Zhivotovsky B (2010) The unpredictable caspase-2: what can it do? Trends Cell Biol 20(3):150–159PubMedCrossRefGoogle Scholar
  28. 28.
    Martinasso G, Oraldi M, Trombetta A, Maggiora M, Bertetto O, Canuto RA, Muzio G (2007) Involvement of PPARs in cell proliferation and apoptosis in human colon cancer specimens and in normal and cancer cell lines. PPAR Res 2007:93416PubMedCrossRefGoogle Scholar
  29. 29.
    Mutoh M, Niho N, Wakabayashi K (2006) Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice. Biol Chem 387(4):381–385. doi: 10.1515/bc.2006.051 PubMedCrossRefGoogle Scholar
  30. 30.
    Feilchenfeldt J, Brundler MA, Soravia C, Totsch M, Meier CA (2004) Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPAR[gamma]-coactivator 1 (PGC-1). Cancer Lett 203(1):25–33PubMedCrossRefGoogle Scholar
  31. 31.
    Li TG, Chiang JYL (2009) Regulation of bile acid and cholesterol metabolism by PPARs. PPAR ResGoogle Scholar
  32. 32.
    Schwab U, Louheranta A, Torronen A, Uusitupa M (2006) Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur J Clin Nutr 60(9):1073–1080PubMedCrossRefGoogle Scholar
  33. 33.
    Aller R, de Luis DA, Izaola O, La Calle F, del Olmo L, Fernandez L, Arranz T, Hernandez JMG (2004) Effect of soluble fiber intake in lipid and glucose leves in healthy subjects: a randomized clinical trial. Diabetes Res Clin Pract 65(1):7–11PubMedCrossRefGoogle Scholar
  34. 34.
    Wu K, Bowman R, Welch AA, Luben RN, Wareham N, Khaw KT, Bingham SA (2007) Apolipoprotein E polymorphisms, dietary fat and fibre, and serum lipids: the EPIC Norfolk study. Eur Heart J 28(23):2930–2936PubMedCrossRefGoogle Scholar
  35. 35.
    Marcil V, Delvin E, Seidman E, Poitras L, Zoltowska M, Garofalo C, Levy E (2002) Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 283(2):G340–G346PubMedGoogle Scholar
  36. 36.
    Arora T, Sharma R, Frost G (2011) Propionate. Anti-obesity and satiety enhancing factor? Appetite 56(2):511–515. doi: 10.1016/j.appet.2011.01.016 PubMedCrossRefGoogle Scholar
  37. 37.
    Field FJ, Watt K, Mathur SN (2008) Origins of intestinal ABCA1-mediated HDL-cholesterol. J Lipid Res 49(12):2605–2619PubMedCrossRefGoogle Scholar
  38. 38.
    Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46(8):535–548PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Heli Putaala
    • 1
  • Harri Mäkivuokko
    • 1
    • 2
  • Kirsti Tiihonen
    • 1
  • Nina Rautonen
    • 1
  1. 1.Danisco Health & NutritionKantvikFinland
  2. 2.The Finnish Red Cross Blood Service, R&DHelsinkiFinland

Personalised recommendations