Molecular and Cellular Biochemistry

, Volume 355, Issue 1–2, pp 127–134 | Cite as

Berberine cooperates with adrenal androgen dehydroepiandrosterone sulfate to attenuate PDGF-induced proliferation of vascular smooth muscle cell A7r5 through Skp2 signaling pathway

  • Jia Liu
  • Jian Xiu
  • Junxian Cao
  • Qianping Gao
  • Dan Ma
  • Lu Fu
Article

Abstract

Platelet-derived growth factor (PDGF) is released from vascular smooth muscle cell (VSMC), after percutaneous coronary intervention and is related with neointimal proliferation and restenosis. Adrenal steroid dehydroepiandrosterone sulfate (DHEAS), the sulfated prohormone of dehydroepiandrosterone has shown remarkable biological activity against proliferation of VSMC in some animal and clinical studies. Combinations of DHEAS with other agents have also shown promising results, with acquiring more efficient effect. Berberine is a naturally occurring isoquinoline alkaloid. To investigate their effects in combination, a VSMC cell line A7r5 was stimulated by PDGF-BB (dimer of the B chain of PDGF), and then treated with berberine and/or DHEAS in the current study. Cell proliferation assay, cell cycle assay, Western blot, and co-immunoprecipitation were analyzed in A7r5 cells. Antiproliferative effects of berberine and/or DHEAS targeting the Skp2/p27 pathways were evaluated. Berberine and DHEAS can both inhibit the growth of A7r5 cells. Berberine induces cell cycle arrest and potentiates the inhibitory effect of DHEAS through disrupting the binding of p27, p21 with Skp2. Berberine and DHEAS decreased the expression of CDK2, CDK4, PCNA, cyclin D1, and cyclin E, which was induced by PDGF-BB. Being treated with berberine and DHEAS also promoted p27 and p21 bind to CDK2, so the proliferation of A7r5 cells induced by PDGF-BB was inhibited. The data provide evidence that berberine acts through the inhibition of p27-Skp2 and p21-Skp2 with subsequent activation of the cell cycle arrest, which leads to the increase in sensitivity to DHEAS. In summary, the findings suggest that combined berberine and DHEAS will be active in the prevention of restenosis after angioplasty treatment, and the treatment of atherosclerosis.

Keywords

Berberine DHEAS Cell cycle arrest Skp2 

References

  1. 1.
    Liu MW, Roubin GS, King SB III (1989) Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia. Circulation 79(6):1374–1387PubMedCrossRefGoogle Scholar
  2. 2.
    Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39(2):183–193PubMedCrossRefGoogle Scholar
  3. 3.
    Bennett MR (2003) In-stent stenosis: pathology and implications for the development of drug eluting stents. Heart 89(2):218–224PubMedCrossRefGoogle Scholar
  4. 4.
    Kawai-Kowase K, Owens GK (2007) Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 292(1):C59–C69PubMedCrossRefGoogle Scholar
  5. 5.
    Uchida K, Sasahara M, Morigami N, Hazama F, Kinoshita M (1996) Expression of platelet-derived growth factor B-chain in neointimal smooth muscle cells of balloon injured rabbit femoral arteries. Atherosclerosis 124(1):9–23PubMedCrossRefGoogle Scholar
  6. 6.
    Chandrasekar B, Tanguay JF (2000) Platelets and restenosis. J Am Coll Cardiol 35(3):555–562PubMedCrossRefGoogle Scholar
  7. 7.
    Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, Rao MN, Tulis DA, Ren J, Sreejayan N (2006) Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26(1):85–90PubMedCrossRefGoogle Scholar
  8. 8.
    Assoian RK, Marcantonio EE (1996) The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis. J Clin Invest 98(11):2436–2439PubMedCrossRefGoogle Scholar
  9. 9.
    Orentreich N, Brind JL, Rizer RL, Vogelman JH (1984) Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 59(3):551–555PubMedCrossRefGoogle Scholar
  10. 10.
    Hornsby PJ (1995) Biosynthesis of DHEAS by the human adrenal cortex and its age-related decline. Ann N Y Acad Sci 774:29–46PubMedCrossRefGoogle Scholar
  11. 11.
    Vermeulen A (1995) Dehydroepiandrosterone sulfate and aging. Ann N Y Acad Sci 774:121–127PubMedCrossRefGoogle Scholar
  12. 12.
    Mitchell LE, Sprecher DL, Borecki IB, Rice T, Laskarzewski PM, Rao DC (1994) Evidence for an association between dehydroepiandrosterone sulfate and nonfatal, premature myocardial infarction in males. Circulation 89(1):89–93PubMedGoogle Scholar
  13. 13.
    Barrett-Connor E, Goodman-Gruen D (1995) The epidemiology of DHEAS and cardiovascular disease. Ann N Y Acad Sci 774:259–270PubMedCrossRefGoogle Scholar
  14. 14.
    Słowínska-Srzednicka J, Zgliczyński S, Ciświcka-Sznajderman M, Srzednicki M, Soszyński P, Biernacka M, Woroszyłska M, Ruzyłło W, Sadowski Z (1989) Decreased plasma dehydroepiandrosterone sulfate and dihydrotestosterone concentrations in young men after myocardial infarction. Atherosclerosis 79(2–3):197–203PubMedCrossRefGoogle Scholar
  15. 15.
    Peters JM, Zhou YC, Ram PA, Lee SS, Gonzalez FJ, Waxman DJ (1996) Peroxisome proliferator-activated receptor alpha required for gene induction by dehydroepiandrosterone-3 beta-sulfate. Mol Pharmacol 50(1):67–74PubMedGoogle Scholar
  16. 16.
    Furutama D, Fukui R, Amakawa M, Ohsawa N (1998) Inhibition of migration and proliferation of vascular smooth muscle cells by dehydroepiandrosterone sulfate. Biochim Biophys Acta 1406(1):107–114PubMedGoogle Scholar
  17. 17.
    Hampl V, Bíbová J, Povýsilová V, Herget J (2003) Dehydroepiandrosterone sulphate reduces chronic hypoxic pulmonary hypertension in rats. Eur Respir J 21(5):862–865PubMedCrossRefGoogle Scholar
  18. 18.
    Altman R, Motton DD, Kota RS, Rutledge JC (2008) Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: roles of PPARalpha and NF-kappaB. Vascul Pharmacol 48(2–3):76–84PubMedCrossRefGoogle Scholar
  19. 19.
    Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10(12):1344–1351PubMedCrossRefGoogle Scholar
  20. 20.
    Hu JP, Nishishita K, Sakai E, Yoshida H, Kato Y, Tsukuba T, Okamoto K (2008) Berberine inhibits RANKL-induced osteoclast formation and survival through suppressing the NF-kappaB and Akt pathways. Eur J Pharmacol 580(1–2):70–79PubMedCrossRefGoogle Scholar
  21. 21.
    Lee S, Lim HJ, Park HY, Lee KS, Park JH, Jang Y (2006) Berberine inhibits rat vascular smooth muscle cell proliferation and migration in vitro and improves neointima formation after balloon injury in vivo. Berberine improves neointima formation in a rat model. Atherosclerosis 186(1):29–37PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, Li F, Tang J, Chen M, Chen J (2007) Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism 56(3):405–412PubMedCrossRefGoogle Scholar
  23. 23.
    Kim JB, Yu JH, Ko E, Lee KW, Song AK, Park SY, Shin I, Han W, Noh DY (2010) The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest. Phytomedicine 17(6):436–440PubMedCrossRefGoogle Scholar
  24. 24.
    Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199PubMedCrossRefGoogle Scholar
  25. 25.
    Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Müller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1(4):207–214PubMedCrossRefGoogle Scholar
  26. 26.
    Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Iemura S, Natsume T, Nakayama KI (2004) Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6(5):661–672PubMedCrossRefGoogle Scholar
  27. 27.
    Bond M, Sala-Newby GB, Newby AC (2004) Focal adhesion kinase (FAK)-dependent regulation of S-phase kinase-associated protein-2 (Skp-2) stability. A novel mechanism regulating smooth muscle cell proliferation. J Biol Chem 279(36):37304–37310PubMedCrossRefGoogle Scholar
  28. 28.
    Carrano AC, Pagano M (2001) Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J Cell Biol 153(7):1381–1390PubMedCrossRefGoogle Scholar
  29. 29.
    Mai Z, Blackburn GL, Zhou JR (2007) Soy phytochemicals synergistically enhance the preventive effect of tamoxifen on the growth of estrogen-dependent human breast carcinoma in mice. Carcinogenesis 28(6):1217–1223PubMedCrossRefGoogle Scholar
  30. 30.
    Wang D, Wang Z, Tian B, Li X, Li S, Tian Y (2008) Two hour exposure to sodium butyrate sensitizes bladder cancer to anticancer drugs. Int J Urol 15(5):435–441PubMedCrossRefGoogle Scholar
  31. 31.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  32. 32.
    Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME, TAXUS-IV Investigators (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350(3):221–231PubMedCrossRefGoogle Scholar
  33. 33.
    Yoneyama A, Kamiya Y, Kawaguchi M, Fujinami T (1997) Effects of dehydroepiandrosterone on proliferation of human aortic smooth muscle cells. Life Sci 60(11):833–838PubMedCrossRefGoogle Scholar
  34. 34.
    Saenger P, New M (1977) Inhibitory action of dehydroepiandrosterone (DHEA) on fibroblast growth. Experientia 33(7):966–967PubMedCrossRefGoogle Scholar
  35. 35.
    Meikle AW, Dorchuck RW, Araneo BA, Stringham JD, Evans TG, Spruance SL, Daynes RA (1992) The presence of a dehydroepiandrosterone-specific receptor binding complex in murine T cells. J Steroid Biochem Mol Biol 42(3–4):293–304PubMedCrossRefGoogle Scholar
  36. 36.
    McIntosh M, Hausman D, Martin R, Hausman G (1998) Dehydroepiandrosterone attenuates preadipocyte growth in primary cultures of stromal-vascular cells. Am J Physiol 275(2 Pt 1):E285–E293PubMedGoogle Scholar
  37. 37.
    Amin AH, Subbaiah TV, Abbasi KM (1969) Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Can J Microbiol 15(9):1067–1076PubMedCrossRefGoogle Scholar
  38. 38.
    Ko WH, Yao XQ, Lau CW, Law WI, Chen ZY, Kwok W, Ho K, Huang Y (2000) Vasorelaxant and antiproliferative effects of berberine. Eur J Pharmacol 399(2–3):187–196PubMedCrossRefGoogle Scholar
  39. 39.
    Collins K, Jacks T, Pavletich NP (1997) The cell cycle and cancer. Proc Natl Acad Sci USA 94(7):2776–2778PubMedCrossRefGoogle Scholar
  40. 40.
    Lee B, Kim CH, Moon SK (2006) Honokiol causes the p21WAF1-mediated G(1)-phase arrest of the cell cycle through inducing p38 mitogen activated protein kinase in vascular smooth muscle cells. FEBS Lett 580(22):5177–5184PubMedCrossRefGoogle Scholar
  41. 41.
    Vidal A, Koff A (2000) Cell-cycle inhibitors: three families united by a common cause. Gene 247(1–2):1–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Jia Liu
    • 1
  • Jian Xiu
    • 1
  • Junxian Cao
    • 1
  • Qianping Gao
    • 1
  • Dan Ma
    • 1
  • Lu Fu
    • 1
  1. 1.Department of CardiologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations