Molecular and Cellular Biochemistry

, Volume 353, Issue 1–2, pp 35–40 | Cite as

The emerging role of microRNAs in asthma

Article

Abstract

Asthma is a common chronic airways disease that worldwide affects people from all ethnic backgrounds. MicroRNAs (miRNAs) are small non-coding RNAs of 18–25 nucleotides that have been shown to regulate gene expression via the RNA interference pathway and found to play fundamental roles in diverse biological and pathological processes. Intriguingly, changes in the expression of several miRNAs are associated with development of asthma. In this review, we summarize the current understanding of the role of miRNAs in asthma to both better understand the pathogenesis of this disease and aid in the formulation of more effective therapeutic strategies.

Keywords

miRNA Asthma Allergic disease Th2 response 

References

  1. 1.
    Locksley RM (2010) Asthma and allergic inflammation. Cell 140:777–783PubMedCrossRefGoogle Scholar
  2. 2.
    Finn PW, Bigby TD (2009) Innate immunity and asthma. Proc Am Thorac Soc 6:260–265PubMedCrossRefGoogle Scholar
  3. 3.
    Bergeron C, Al-Ramli W, Hamid Q (2009) Remodeling in asthma. Proc Am Thorac Soc 6:301–305PubMedCrossRefGoogle Scholar
  4. 4.
    Holgate ST (2008) The airway epithelium is central to the pathogenesis of asthma. Allergol Int 57:1–10PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang J, Pare PD, Sandford AJ (2008) Recent advances in asthma genetics. Respir Res 9:1–8CrossRefGoogle Scholar
  6. 6.
    Moffat MF (2008) Genes in asthma: new genes and new ways. Curr Opin Allergy Clin Immunol 8:411–417CrossRefGoogle Scholar
  7. 7.
    Miller RL, Ho S (2008) Environmental epigenetics and asthma: current concepts and call for studies. Am J Respir Crit Care Med 177:567–573PubMedCrossRefGoogle Scholar
  8. 8.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  9. 9.
    Jiang X, Tsitsiou E, Herrick SE, Lindsay MA (2010) MicroRNAs and the regulation of fibrosis. FEBS J 277:2015–2021PubMedCrossRefGoogle Scholar
  10. 10.
    Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234PubMedCrossRefGoogle Scholar
  11. 11.
    Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  12. 12.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  13. 13.
    Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118PubMedCrossRefGoogle Scholar
  14. 14.
    Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471PubMedCrossRefGoogle Scholar
  15. 15.
    Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H, Chandler JC, Andino R, Cortes J, Hokland P, Huettner CS, Bhatia R, Roy DC, Liebhaber SA, Caligiuri MA, Marcucci G, Garzon R, Croce CM, Calin GA, Perrotti D (2010) miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140:652–665PubMedCrossRefGoogle Scholar
  16. 16.
    Medina PP, Nolde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467:U86–U119CrossRefGoogle Scholar
  17. 17.
    Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017PubMedCrossRefGoogle Scholar
  18. 18.
    Tsitsiou E, Lindsay MA (2009) MicroRNAs and the immune response. Curt Opin Pharmacoly 9:514–520CrossRefGoogle Scholar
  19. 19.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36PubMedCrossRefGoogle Scholar
  20. 20.
    Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA (2007) Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics 8:240PubMedCrossRefGoogle Scholar
  21. 21.
    Kucharewicz I, Bodzenta-Lukaszyk A, Buczko W (2008) Experimental asthma in rat. Pharmacol Rep 60:783–788PubMedGoogle Scholar
  22. 22.
    Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182:4994–5002PubMedCrossRefGoogle Scholar
  23. 23.
    Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, Johnson DS, Chen Y, O’Neill LA (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147PubMedCrossRefGoogle Scholar
  24. 24.
    Mattes J, Collison A, Plank M, Phipps S, Foster PS (2009) Antagonism of microRNA-126 suppresses the effector function of T(H)2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 106:18704–18709PubMedCrossRefGoogle Scholar
  25. 25.
    Garbacki N, Di Valentin E, Piette J, Cataldo D, Crahay C (2009) Matrix metalloproteinase 12 silencing: a therapeutic approach to treat pathological lung tissue remodeling? Pulmon Pharmacol Therap 22:267–278CrossRefGoogle Scholar
  26. 26.
    Di Valentin E, Crahay C, Garbacki N, Hennuy B, Gueders M, Noel A, Foidart JM, Grooten J, Colige A, Piette J, Cataldo D (2009) New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol 296:L185–L197PubMedCrossRefGoogle Scholar
  27. 27.
    Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C (2007) Allelespecific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81:829–834PubMedCrossRefGoogle Scholar
  28. 28.
    Williams AE, Larner-Svensson H, Perry MM, Campbell GA, Herrick SE, Adcock LM, Erjefalt JS, Chung KF, Lindsay MA (2009) MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLOS ONE 4:e5889PubMedCrossRefGoogle Scholar
  29. 29.
    Liu XD, Nelson A, Wang XQ, Kanaji N, Kim M, Sato T, Nakanishi M, Li YJ, Sun JH, Michalski J, Patil A, Basma H, Rennard SI (2009) MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochem Biophys Res Commun 380:177–182PubMedCrossRefGoogle Scholar
  30. 30.
    Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1 β-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689–5698PubMedGoogle Scholar
  31. 31.
    Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M (2009) Down-regulation of miR-133a contributes to up-regulation of RhoA in bronchial smooth muscle cells. Am J Respir Crit Care Med 180:713–719PubMedCrossRefGoogle Scholar
  32. 32.
    Kuhn AR, Schlauch K, Lao R, Halayko AJ, Gerthoffer WT, Singer CA (2010) MicroRNA expression in human airway smooth muscle cells Role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol 42:506–513PubMedCrossRefGoogle Scholar
  33. 33.
    Larner-Svensson HM, Williams AE, Tsitsiou E, Perry MM, Jiang XY, Chung KF, Lindsay MA (2010) Pharmacological studies of the mechanism and function of interleukin-1 beta-induced miRNA-146a expression in primary human airway smooth muscle. Respir Res 11:68PubMedCrossRefGoogle Scholar
  34. 34.
    Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Che 285:29336–29347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Genetics and Molecular Biology, School of MedicineXi’an Jiaotong UniversityXi’anChina
  2. 2.NIHR Translational Research Facility in Respiratory Medicine Group, School of Translational Medicine University of ManchesterManchesterUK

Personalised recommendations