Molecular and Cellular Biochemistry

, Volume 352, Issue 1–2, pp 181–188 | Cite as

miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells

  • Sivasubramani Thulasingam
  • Chandirasegaran Massilamany
  • Arunakumar Gangaplara
  • Hongjiu Dai
  • Shahlo Yarbaeva
  • Sakthivel Subramaniam
  • Jean-Jack Riethoven
  • James Eudy
  • Marjorie Lou
  • Jay Reddy


Reactive oxygen species (ROS) produced in macrophages is critical for microbial killing, but they also take part in inflammation and antigen presentation functions. MicroRNAs (miRNAs) are endogenous regulators of gene expression, and they can control immune responses. To dissect the complex nature of ROS-mediated effects in macrophages, we sought to characterize miRNAs that are responsive to oxidative stress-induced with hydrogen peroxide (H2O2) in the mouse macrophage cell line, RAW 264.7. We have identified a set of unique miRNAs that are differentially expressed in response to H2O2. These include miR-27a*, miR-27b*, miR-29b*, miR-24-2*, and miR-21*, all of which were downregulated except for miR-21*. By using luciferase reporter vector containing nuclear factor-kB (NF-kB) response elements, we demonstrate that overexpression of miR-27b* suppresses lipopolysaccharide-induced activation of NF-kB in RAW 264.7 cells. Our data suggest that macrophage functions can be regulated by oxidative stress-responsive miRNAs by modulating the NF-kB pathway.


Innate immunity Oxidative stress Hydrogen peroxide microRNAs RAW 264.7 cells 


  1. 1.
    Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273 Table of ContentsPubMedCrossRefGoogle Scholar
  2. 2.
    Kohchi C, Inagawa H, Nishizawa T, Soma G (2009) ROS and innate immunity. Anticancer Res 29:817–821PubMedGoogle Scholar
  3. 3.
    Donepudi M, Jovasevic VM, Raychaudhuri P, Mokyr MB (2003) Melphalan-induced up-regulation of B7-1 surface expression on normal splenic B cells. Cancer Immunol Immunother 52:162–170PubMedGoogle Scholar
  4. 4.
    Tse HM, Milton MJ, Schreiner S, Profozich JL, Trucco M, Piganelli JD (2007) Disruption of innate-mediated proinflammatory cytokine and reactive oxygen species third signal leads to antigen-specific hyporesponsiveness. J Immunol 178:908–917PubMedGoogle Scholar
  5. 5.
    Murata Y, Yamashita A, Saito T, Sugamura K, Hamuro J (2002) The conversion of redox status of peritoneal macrophages during pathological progression of spontaneous inflammatory bowel disease in Janus family tyrosine kinase 3(−/−) and IL-2 receptor gamma(−/−) mice. Int Immunol 14:627–636PubMedCrossRefGoogle Scholar
  6. 6.
    Haddad JJ, Fahlman CS (2002) Redox- and oxidant-mediated regulation of interleukin-10: an anti-inflammatory, antioxidant cytokine? Biochem Biophys Res Commun 297:163–176PubMedCrossRefGoogle Scholar
  7. 7.
    Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36PubMedCrossRefGoogle Scholar
  8. 8.
    Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845PubMedCrossRefGoogle Scholar
  9. 9.
    Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161PubMedCrossRefGoogle Scholar
  10. 10.
    Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414PubMedCrossRefGoogle Scholar
  11. 11.
    Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159PubMedCrossRefGoogle Scholar
  12. 12.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486PubMedCrossRefGoogle Scholar
  13. 13.
    O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609PubMedCrossRefGoogle Scholar
  14. 14.
    Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C (2009) Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284:7903–7913PubMedCrossRefGoogle Scholar
  15. 15.
    Cheng Y, Liu X, Zhang S, Lin Y, Yang J, Zhang C (2009) MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J Mol Cell Cardiol 47:5–14PubMedCrossRefGoogle Scholar
  16. 16.
    Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedCrossRefGoogle Scholar
  17. 17.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  18. 18.
    Bilitewski U (2008) Determination of immunomodulatory effects: focus on functional analysis of phagocytes as representatives of the innate immune system. Anal Bioanal Chem 391:1545–1554PubMedCrossRefGoogle Scholar
  19. 19.
    Wang GM, Wu F, Raghavachari N, Reddan JR (1998) Thioltransferase is present in the lens epithelial cells as a highly oxidative stress-resistant enzyme. Exp Eye Res 66:477–485PubMedCrossRefGoogle Scholar
  20. 20.
    Stenvang J, Lindow M, Kauppinen S (2008) Targeting of microRNAs for therapeutics. Biochem Soc Trans 36:1197–1200PubMedCrossRefGoogle Scholar
  21. 21.
    Li G, Barnes D, Butz D, Bjorling D, Cook ME (2005) 10t, 12c-conjugated linoleic acid inhibits lipopolysaccharide-induced cyclooxygenase expression in vitro and in vivo. J Lipid Res 46:2134–2142PubMedCrossRefGoogle Scholar
  22. 22.
    Sun J, Ramnath RD, Zhi L, Tamizhselvi R, Bhatia M (2008) Substance P enhances NF-kappaB transactivation and chemokine response in murine macrophages via ERK1/2 and p38 MAPK signaling pathways. Am J Physiol Cell Physiol 294:C1586–C1596PubMedCrossRefGoogle Scholar
  23. 23.
    Barber RD, Harmer DW, Coleman RA, Clark BJ (2005) GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 21:389–395PubMedCrossRefGoogle Scholar
  24. 24.
    Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193PubMedCrossRefGoogle Scholar
  25. 25.
    Smyth GK, Michaud J, Scott HS (2005) Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075PubMedCrossRefGoogle Scholar
  26. 26.
    Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Y, Fong CC, Wong MS, Tzang CH, Lai WP, Fong WF, Sui SF, Yang M (2005) Molecular mechanisms of survival and apoptosis in RAW 264.7 macrophages under oxidative stress. Apoptosis 10:545–556PubMedCrossRefGoogle Scholar
  28. 28.
    Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4:e6377PubMedCrossRefGoogle Scholar
  29. 29.
    Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefGoogle Scholar
  30. 30.
    Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103PubMedCrossRefGoogle Scholar
  31. 31.
    Yu X, Zhou Q, Li SC, Luo Q, Cai Y, Lin WC, Chen H, Yang Y, Hu S, Yu J (2008) The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PLoS One 3:e2997PubMedCrossRefGoogle Scholar
  32. 32.
    Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864PubMedCrossRefGoogle Scholar
  33. 33.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRefGoogle Scholar
  34. 34.
    Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59:13–23PubMedCrossRefGoogle Scholar
  35. 35.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  36. 36.
    Maemura K, Zheng Q, Wada T, Ozaki M, Takao S, Aikou T, Bulkley GB, Klein AS, Sun Z (2005) Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. Immunol Cell Biol 83:336–343PubMedCrossRefGoogle Scholar
  37. 37.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  38. 38.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  39. 39.
    Mercurio F, Manning AM (1999) NF-kappaB as a primary regulator of the stress response. Oncogene 18:6163–6171PubMedCrossRefGoogle Scholar
  40. 40.
    Fan Z, Yang H, Bau B, Soder S, Aigner T (2006) Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int 26:900–903PubMedCrossRefGoogle Scholar
  41. 41.
    Fantuzzi L, Spadaro F, Purificato C, Cecchetti S, Podo F, Belardelli F, Gessani S, Ramoni C (2008) Phosphatidylcholine-specific phospholipase C activation is required for CCR5-dependent, NF-kB-driven CCL2 secretion elicited in response to HIV-1 gp120 in human primary macrophages. Blood 111:3355–3363PubMedCrossRefGoogle Scholar
  42. 42.
    Remppis A, Bea F, Greten HJ, Buttler A, Wang H, Zhou Q, Preusch MR, Enk R, Ehehalt R, Katus H, Blessing E (2010) Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NFkappaB-dependent pathway. Mediators Inflamm 2010:194896PubMedCrossRefGoogle Scholar
  43. 43.
    Sarada S, Himadri P, Mishra C, Geetali P, Ram MS, Ilavazhagan G (2008) Role of oxidative stress and NFkB in hypoxia-induced pulmonary edema. Exp Biol Med 233:1088–1098CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Sivasubramani Thulasingam
    • 1
  • Chandirasegaran Massilamany
    • 1
  • Arunakumar Gangaplara
    • 1
  • Hongjiu Dai
    • 1
  • Shahlo Yarbaeva
    • 1
  • Sakthivel Subramaniam
    • 1
  • Jean-Jack Riethoven
    • 2
  • James Eudy
    • 3
  • Marjorie Lou
    • 1
  • Jay Reddy
    • 1
  1. 1.School of Veterinary Medicine and Biomedical SciencesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Center for BiotechnologyUniversity of Nebraska-LincolnLincolnUSA
  3. 3.DNA Microarray and Sequencing Core FacilitiesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations