Molecular and Cellular Biochemistry

, Volume 351, Issue 1–2, pp 197–205 | Cite as

Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes

  • M. Balasubramanyam
  • S. Aravind
  • K. Gokulakrishnan
  • P. Prabu
  • C. Sathishkumar
  • H. Ranjani
  • V. Mohan
Article

Abstract

Type 2 diabetes patients exhibit subclinical inflammation but the regulatory mechanisms are poorly understood. We sought to evaluate the role of miR-146a expression along with its downstream proinflammatory signals in relation to glycemic control and insulin resistance. Study subjects (n = 20 each) comprised of clinically well characterized Type 2 diabetes patients and control non-diabetic subjects. miRNA and mRNA expression levels were probed in peripheral blood mononuclear cells (PBMC) by Real-time RT-PCR and plasma levels of TNFα and IL-6 were measured by ELISA. The miR-146a expression levels were significantly decreased in PBMCs from patients with Type 2 diabetes compared to control subjects. Among the target genes of miR-146a, TRAF-6 mRNA expression was significantly increased in patients with Type 2 diabetes while there was no significant difference in the mRNA levels of IRAK1 in the study groups. In contrast, there were significantly increased levels of NFκB expression in patients with Type 2 diabetes. There was an increased trend in the levels of TNFα and IL-6 mRNA in patients with type 2 diabetes. While SOCS-3 mRNA levels increased, plasma TNFα and IL-6 levels were also significantly higher in patients with type 2 diabetes. miR-146a expression was negatively correlated to glycated hemoglobin, insulin resistance, TRAF6, and NFκB mRNA levels and circulatory levels of TNFα and IL-6. Reduced miR-146a levels are associated with insulin resistance, poor glycemic control, and several proinflammatory cytokine genes and circulatory levels of TNFα and IL-6 in Asian Indian Type 2 diabetic patients.

Keywords

miRNA miR-146a Insulin resistance Inflammation Type 2 diabetes Asian Indians 

References

  1. 1.
    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801PubMedCrossRefGoogle Scholar
  2. 2.
    Deepa R, Velmurugan K, Arvind K, Sivaram P, Sientay C, Uday S, Mohan V (2006) Serum levels of interleukin 6, C-reactive protein, vascular cell adhesion molecule 1, and monocyte chemotactic protein 1 in relation to insulin resistance and glucose intolerance—the Chennai Urban Rural Epidemiology Study (CURES). Metabolism 55:1232–1238PubMedCrossRefGoogle Scholar
  3. 3.
    Gokulakrishnan K, Deepa R, Mohan V (2008) Association of high sensitivity C-reactive protein [hsCRP] and tumour necrosis factor-alpha [TNF-alpha] with carotid intimal medial thickness in subjects with different grades of glucose intolerance—the Chennai Urban Rural Epidemiology Study (CURES-31). Clin Biochem 41:480–485PubMedGoogle Scholar
  4. 4.
    Tsiotra PC, Tsigos C, Yfanti E, Anastasiou E, Vikentiou M, Psarra K, Papasteriades C, Raptis SA (2007) Visfatin, TNFα and IL-6 mRNA expression is increased in mononuclear cells from type 2 diabetic women. Horm Metab Res 39:758–763PubMedCrossRefGoogle Scholar
  5. 5.
    Gokulakrishnan K, Mohanavalli KT, Monickaraj F, Mohan V, Balasubramanyam M (2009) Subclinical inflammation/oxidation as revealed by altered gene expression profiles in subjects with impaired glucose tolerance and Type 2 diabetes patients. Mol Cell Biochem 324:173–181PubMedCrossRefGoogle Scholar
  6. 6.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  7. 7.
    Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459PubMedCrossRefGoogle Scholar
  8. 8.
    Lindsay MA (2008) microRNAs and the immune response. Trends Immunol 29:343–351PubMedCrossRefGoogle Scholar
  9. 9.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486PubMedCrossRefGoogle Scholar
  10. 10.
    Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X (2009) MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183:2150–2158PubMedCrossRefGoogle Scholar
  11. 11.
    Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK (2008) Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 10:R101PubMedCrossRefGoogle Scholar
  12. 12.
    Alberti KG, Zimmet PZ (1998) Definition diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus, provisional report of a WHO Consultation. Diabet Med 15:539–553PubMedCrossRefGoogle Scholar
  13. 13.
    Deepa M, Pradeepa R, Rema M, Mohan A, Deepa R, Shanthirani S, Mohan V (2003) The Chennai Urban Rural Epidemiology Study (CURES)—study design and methodology (urban component) (CURES-I). J Assoc Physicians India 51:863–870PubMedGoogle Scholar
  14. 14.
    Balasubramanyam M, Kimura M, Aviv A, Gardner JP (1993) Kinetics of calcium transport across the lymphocyte plasma membrane. Am J Physiol 265:C321–C327PubMedGoogle Scholar
  15. 15.
    Pickup JC, Crook MA (1998) Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41:1241–1248PubMedCrossRefGoogle Scholar
  16. 16.
    Lin J, Glynn RJ, Rifai N, Manson JE, Ridker PM, Nathan DM, Schaumberg DA (2008) Inflammation and progressive nephropathy in type 1 diabetes in the diabetes control and complications trial. Diabetes Care 31:2338–2343PubMedCrossRefGoogle Scholar
  17. 17.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCrossRefGoogle Scholar
  18. 18.
    Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H (2008) Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 58:1284–1292PubMedCrossRefGoogle Scholar
  19. 19.
    Sonkoly E, Stahle M, Pivarcsi A (2008) MicroRNAs: novel regulators in skin inflammation. Clin Exp Dermatol 33:312–315PubMedCrossRefGoogle Scholar
  20. 20.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075PubMedCrossRefGoogle Scholar
  21. 21.
    Lin SL, Chiang A, Chang D, Ying SY (2008) Loss of miR-146a function in hormone-refractory prostate cancer. RNA 14:417–424PubMedCrossRefGoogle Scholar
  22. 22.
    Mishima Y, Kuyama A, Tada A, Takahashi K, Ishioka T, Kibata M (2001) Relationship between serum tumor necrosis factor-alpha and insulin resistance in obese men with Type 2 diabetes mellitus. Diabetes Res Clin Pract 52:119–123PubMedCrossRefGoogle Scholar
  23. 23.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751PubMedGoogle Scholar
  24. 24.
    Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA (1996) The expression of TNF Alpha by human muscle. Relationship to insulin resistance. J Clin Invest 97:1111–1116PubMedCrossRefGoogle Scholar
  25. 25.
    Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK (2005) Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 54:2939–2945PubMedCrossRefGoogle Scholar
  26. 26.
    Pedersen M, Bruunsgaard H, Weis N, Hendel HW, Andreassen BU, Eldrup E, Dela F, Pedersen BK (2003) Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with type-2 diabetes. Mech Ageing Dev 124:495–502PubMedCrossRefGoogle Scholar
  27. 27.
    Huang Y, Li T, Sane DC, Li L (2004) IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. J Biol Chem 279:51697–51703PubMedCrossRefGoogle Scholar
  28. 28.
    Lakoski SG, Li L, Langefeld CD, Liu Y, Howard TD, Brosnihan KB, Xu J, Bowden DW, Herrington DM (2007) The association between innate immunity gene (IRAK1) and C-reactive protein in the Diabetes Heart Study. Exp Mol Pathol 82:280–283PubMedCrossRefGoogle Scholar
  29. 29.
    Liu S, Lutz J, Chang J, Liu D, Heemann U, Baumann M (2010) TRAF6 knockdown promotes survival and inhibits inflammatory response to lipopolysaccharides in rat primary renal proximal tubule cells. Acta Physiol (Oxf) 199:339–346Google Scholar
  30. 30.
    Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, Shoelson SE (2001) Reversal of obesity- and diet induced insulin resistance with salicylates or targeted disruption of IkkB. Science 293:1673–1677PubMedCrossRefGoogle Scholar
  31. 31.
    Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKKB and NF-kB. Nat Med 11:183–190PubMedCrossRefGoogle Scholar
  32. 32.
    Hofmann MA, Schiekofer S, Kanitz M, Klevesath MS, Joswig M, Lee V, Morcos M, Tritschler H, Ziegler R, Wahl P, Bierhaus A, Nawroth PP (1998) Insufficient glycemic control increases nuclear factor k B binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes. Diabetes Care 21:1310–1316PubMedCrossRefGoogle Scholar
  33. 33.
    Adaikalakoteswari A, Rema M, Mohan V, Balasubramanyam M (2007) Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy. Int J Biochem Cell Biol 39:1673–1684PubMedCrossRefGoogle Scholar
  34. 34.
    Patel S, Santani D (2009) Role of NF-kappaB in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61:595–603PubMedGoogle Scholar
  35. 35.
    Lin R, Génin P, Mamane Y, Hiscott J (2000) Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 20:6342–6353PubMedCrossRefGoogle Scholar
  36. 36.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446PubMedCrossRefGoogle Scholar
  37. 37.
    Rønn SG, Börjesson A, Bruun C, Heding PE, Frobøse H, Mandrup-Poulsen T, Karlsen AE, Rasschaert J, Sandler S, Billestrup N (2008) Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection. Diabetologia 51:1873–1882PubMedCrossRefGoogle Scholar
  38. 38.
    Ortiz-Muñoz G, Lopez-Parra V, Lopez-Franco O, Fernandez-Vizarra P, Mallavia B, Flores C, Sanz A, Blanco J, Mezzano S, Ortiz A, Egido J, Gomez-Guerrero C (2010) Suppressors of cytokine signaling abrogate diabetic nephropathy. J Am Soc Nephrol 21:763–772PubMedCrossRefGoogle Scholar
  39. 39.
    Karlsen AE, Heding PE, Frobøse H, Rønn SG, Kruhøffer M, Orntoft TF, Darville M, Eizirik DL, Pociot F, Nerup J, Mandrup-Poulsen T, Billestrup N (2004) Suppressor of cytokine signalling (SOCS)-3 protects β cells against IL-1β-mediated toxicity through inhibition of multiple nuclear factor-kB-regulated proapoptotic pathways. Diabetologia 47:1998–2011PubMedCrossRefGoogle Scholar
  40. 40.
    Frobøse H, Rønn SG, Heding PE, Mendoza H, Cohen P, Mandrup-Poulsen T, Billestrup N (2006) Suppressor of cytokine signaling-3 inhibits interleukin-1 signaling by targeting the TRAF-6/TAK1 complex. Mol Endocrinol 20:1587–1596PubMedCrossRefGoogle Scholar
  41. 41.
    Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, Sommer SS, Rossi JJ (2009) SNPs in human miRNA genes affect biogenesis and function. RNA 15:1640–1651PubMedCrossRefGoogle Scholar
  42. 42.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105:7269–7274PubMedCrossRefGoogle Scholar
  43. 43.
    Granjon A, Gustin MP, Rieusset J, Lefai E, Meugnier E, Güller I, Cerutti C, Paultre C, Disse E, Rabasa-Lhoret R, Laville M, Vidal H, Rome S (2009) The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58:2555–2564PubMedCrossRefGoogle Scholar
  44. 44.
    Pradhan AD, Everett BM, Cook NR, Rifai N, Ridker PM (2009) Effects of initiating insulin and metformin on glycemic control and inflammatory biomarkers among patients with type 2 diabetes: the LANCET randomized trial. JAMA 302:1186–1194PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • M. Balasubramanyam
    • 1
  • S. Aravind
    • 1
  • K. Gokulakrishnan
    • 1
  • P. Prabu
    • 1
  • C. Sathishkumar
    • 1
  • H. Ranjani
    • 1
  • V. Mohan
    • 1
  1. 1.Department of Cell and Molecular BiologyMadras Diabetes Research FoundationChennaiIndia

Personalised recommendations