Molecular and Cellular Biochemistry

, Volume 351, Issue 1–2, pp 149–156 | Cite as

Bioinformatic identification of novel protein phosphatases in the dog genome

  • Mrigendra B. Karmacharya
  • Jae-Won SohEmail author


Protein kinases and protein phosphatases constitute about 2–4% of the genes in a typical eukaryotic genome. Protein phosphatases are important players in many cellular processes such as proliferation, differentiation, cell adhesion, and motility. In this study, we identified, classified, and analyzed protein phosphatase complement of the dog genome. In this article, we report the identification of at least 178 putative protein phosphatases in dog which include 51 PSTPs, 112 PTPs, and 15 Asp-based protein phosphatases. Interestingly, we found at least five novel protein phosphatases in dog, namely DUSP5L, DUSP18L, MTMR9L, MTMR12L, and PPP6CL which are not present in human, mouse, rat, and cow. In addition, we found PTP4A1-rt, a retro-transposed copy of the PTP4A1 gene, in chromosome 27. Furthermore, we modeled three-dimensional structures of the catalytic domains of these putative protein phosphatases and aligned them to see the structural similarities between them. We docked PPP2CA with okadaic acid and calculated the value of affinity energy as −8.8 kcal/mol. Our nucleotide substitution rate study revealed that apparently none of the phosphatase family is under significantly higher evolutionary pressure.


Dog Canis familiaris Phosphatases Phosphatome PSTP PTP 



This study was supported by an INHA UNIVERSITY Research Grant.

Supplementary material

11010_2011_722_MOESM1_ESM.tif (13.3 mb)
Supplementary material 1 (TIFF 13632 kb)
11010_2011_722_MOESM2_ESM.tif (3.3 mb)
Supplementary material 2 (TIFF 3382 kb)
11010_2011_722_MOESM3_ESM.tif (5.7 mb)
Supplementary material 3 (TIFF 5794 kb)
11010_2011_722_MOESM4_ESM.tif (10.8 mb)
Supplementary material 4 (TIFF 11095 kb)
11010_2011_722_MOESM5_ESM.tif (4.6 mb)
Supplementary material 5 (TIFF 4754 kb)
11010_2011_722_MOESM6_ESM.tif (7.5 mb)
Supplementary material 6 (TIFF 7691 kb)
11010_2011_722_MOESM7_ESM.xls (880 kb)
Supplementary material 7 (XLS 880 kb)
11010_2011_722_MOESM8_ESM.xls (44 kb)
Supplementary material 8 (XLS 45 kb)
11010_2011_722_MOESM9_ESM.xls (62 kb)
Supplementary material 9 (XLS 62 kb)
11010_2011_722_MOESM10_ESM.xls (24 kb)
Supplementary material 10 (XLS 24 kb)
11010_2011_722_MOESM11_ESM.xls (72 kb)
Supplementary material 11 (XLS 73 kb)
11010_2011_722_MOESM12_ESM.xls (86 kb)
Supplementary material 12 (XLS 86 kb)
11010_2011_722_MOESM13_ESM.xls (38 kb)
Supplementary material 13 (XLS 38 kb)
11010_2011_722_MOESM14_ESM.doc (26 kb)
Supplementary material 14 (DOC 26 kb)


  1. 1.
    Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25(12):596–601PubMedCrossRefGoogle Scholar
  2. 2.
    Moorhead GB, De Wever V, Templeton G, Kerk D (2009) Evolution of protein phosphatases in plants and animals. Biochem J 417(2):401–409PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang ZY (2001) Protein tyrosine phosphatases: prospects for therapeutics. Curr Opin Chem Biol 5(4):416–423PubMedCrossRefGoogle Scholar
  4. 4.
    Gallego M, Virshup DM (2005) Protein serine/threonine phosphatases: life, death, and sleeping. Curr Opin Cell Biol 17(2):197–202PubMedCrossRefGoogle Scholar
  5. 5.
    Klumpp S, Krieglstein J (2002) Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol 2(4):458–462PubMedCrossRefGoogle Scholar
  6. 6.
    Lang R, Hammer M, Mages J (2006) DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J Immunol 177(11):7497–7504PubMedGoogle Scholar
  7. 7.
    Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320PubMedCrossRefGoogle Scholar
  8. 8.
    Lyon MA, Ducruet AP, Wipf P, Lazo JS (2002) Dual-specificity phosphatases as targets for antineoplastic agents. Nat Rev Drug Discov 1(12):961–976PubMedCrossRefGoogle Scholar
  9. 9.
    Milanesi L, Petrillo M, Sepe L, Boccia A, D’Agostino N, Passamano M, Di Nardo S, Tasco G, Casadio R, Paolella G (2005) Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics 6(Suppl 4):S20PubMedCrossRefGoogle Scholar
  10. 10.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedCrossRefGoogle Scholar
  11. 11.
    Arena S, Benvenuti S, Bardelli A (2005) Genetic analysis of the kinome and phosphatome in cancer. Cell Mol Life Sci 62(18):2092–2099PubMedCrossRefGoogle Scholar
  12. 12.
    Kerk D, Templeton G, Moorhead GB (2008) Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants. Plant Physiol 146(2):351–367PubMedCrossRefGoogle Scholar
  13. 13.
    Moorhead GB, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8(3):234–244PubMedCrossRefGoogle Scholar
  14. 14.
    Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2008) GenBank. Nucleic Acids Res 37(Database issue):D26–D31PubMedGoogle Scholar
  15. 15.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCrossRefGoogle Scholar
  16. 16.
    Letunic I, Doerks T, Bork P (2009) SMART 6: recent updates and new developments. Nucleic Acids Res 37(Database issue):D229–D232PubMedCrossRefGoogle Scholar
  17. 17.
    Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288PubMedGoogle Scholar
  18. 18.
    The UniProt Consortium (2009) The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37(Database issue):D169–D174CrossRefGoogle Scholar
  19. 19.
    Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH (2009) CDD: specific functional annotation with the conserved domain database. Nucleic Acids Res 37(Database issue):D205–D210PubMedCrossRefGoogle Scholar
  20. 20.
    Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763PubMedCrossRefGoogle Scholar
  21. 21.
    Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35(Database issue):D237–D240PubMedCrossRefGoogle Scholar
  22. 22.
    Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12(4):656–664PubMedGoogle Scholar
  23. 23.
    Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, Thakkapallayil A, Sugnet CW, Stanke M, Smith KE, Siepel A, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pedersen JS, Hsu F, Hinrichs AS, Harte RA, Diekhans M, Clawson H, Bejerano G, Barber GP, Baertsch R, Haussler D, Kent WJ (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35(Database issue):D668–D673PubMedCrossRefGoogle Scholar
  24. 24.
    Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5(4):378–388PubMedCrossRefGoogle Scholar
  25. 25.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  26. 26.
    Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web server issue):W407–W410PubMedCrossRefGoogle Scholar
  27. 27.
    Gille C, Frommel C (2001) STRAP: editor for STRuctural Alignments of Proteins. Bioinformatics 17(4):377–378PubMedCrossRefGoogle Scholar
  28. 28.
    Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11(9):739–747PubMedCrossRefGoogle Scholar
  29. 29.
    Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461Google Scholar
  30. 30.
    Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452PubMedCrossRefGoogle Scholar
  31. 31.
    Pierleoni A, Martelli PL, Fariselli P, Casadio R (2006) BaCelLo: a balanced subcellular localization predictor. Bioinformatics 22(14):e408–e416PubMedCrossRefGoogle Scholar
  32. 32.
    Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971PubMedCrossRefGoogle Scholar
  33. 33.
    Hawkins J, Boden M (2006) Detecting and sorting targeting peptides with neural networks and support vector machines. J Bioinform Comput Biol 4(1):1–18PubMedCrossRefGoogle Scholar
  34. 34.
    Wolstencroft K, Lord P, Tabernero L, Brass A, Stevens R (2006) Protein classification using ontology classification. Bioinformatics 22(14):e530–e538PubMedCrossRefGoogle Scholar
  35. 35.
    Vuoristo JT, Ala-Kokko L (2001) cDNA cloning, genomic organization and expression of the novel human metallophosphoesterase gene MPPE1 on chromosome 18p112. Cytogenet Cell Genet 95(1–2):60–63PubMedCrossRefGoogle Scholar
  36. 36.
    Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK (2007) Structural genomics of protein phosphatases. J Struct Funct Genomics 8(2–3):121–140PubMedCrossRefGoogle Scholar
  37. 37.
    Lim KL, Ng CH, Pallen CJ (1999) Catalytic activation of the membrane distal domain of protein tyrosine phosphatase epsilon, but not CD45, by two point mutations. Biochim Biophys Acta 1434(2):275–283PubMedCrossRefGoogle Scholar
  38. 38.
    Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi Y (2006) Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell 127(2):341–353PubMedCrossRefGoogle Scholar
  39. 39.
    Patterson DF (2000) Companion animal medicine in the age of medical genetics. J Vet Intern Med 14(1):1–9PubMedCrossRefGoogle Scholar
  40. 40.
    Ostrander EA, Giniger E (1997) Semper fidelis: what man’s best friend can teach us about human biology and disease. Am J Hum Genet 61(3):475–480PubMedCrossRefGoogle Scholar
  41. 41.
    Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7(11):833–846PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Biomedical Research Center for Signal Transduction Networks, Department of ChemistryInha UniversityIncheonKorea

Personalised recommendations