Molecular and Cellular Biochemistry

, Volume 345, Issue 1–2, pp 45–52 | Cite as

SOCS3 inhibits insulin signaling in porcine primary adipocytes

  • Shuang-Juan Yang
  • Cheng-Quan Xu
  • Jiang-Wei Wu
  • Gong-She YangEmail author


Insulin resistance is a major player in the pathogenesis of type II diabetes, the metabolic syndrome, and obesity. SOCS3 plays an important role in the development of insulin resistance. To investigate the role of SOCS3 in porcine adipocyte insulin signaling, we first detected the effect of insulin on SOCS3 mRNA and protein expression in porcine primary adipocytes by real-time RT-PCR and Western blotting. Then, we constructed a recombinant adenovirus encoding SOCS3 gene (Ad-SOCS3) which was used to infect differentiated porcine primary adipocytes for 3 days. The expression and phosphorylation of main insulin signaling components were detected by Western blotting. The results showed that 100 nM insulin could induce SOCS3 mRNA expression but not protein expression, and overexpression of SOCS3 decreased IRS1 protein level, insulin-stimulated IRS1 tyrosine phosphorylation, PI3K activation, and Akt phosphorylation, but increased IRS1 serine phosphorylation in porcine primary adipocytes. These results indicate that SOCS3 is an important negative regulator of insulin signaling in porcine adipocytes. Thus, SOCS3 may be a novel therapeutic target for the prevention or treatment of insulin resistance and type II diabetes.


SOCS3 Insulin signaling Porcine primary adipocytes Phosphorylation 



This study was supported by The National High Technology Research and Development Program (No. 2006AA10Z138) and Key and Specific National Project for Creating New Biological Species Transgenically (No. 2008ZX08006-005) of China. We thank Dr. Bin Wu and Dr. J. Gale for their suggestions and correction of the English manuscript.


  1. 1.
    Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, Knowler WC, Bennett PH, Bogardus C (1993) Insulin-resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes-mellitus—prospective studies of pima-indians. N Engl J Med 329:1988–1992CrossRefPubMedGoogle Scholar
  2. 2.
    Haffner SM, Stern MP, Mitchell BD, Hazuda HP, Patterson JK (1990) Incidence of type II diabetes in Mexican Americans predicted by fasting insulin and glucose levels, obesity, and body-fat distribution. Diabetes 39:283–288CrossRefPubMedGoogle Scholar
  3. 3.
    Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR (1990) Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113:909–915PubMedGoogle Scholar
  4. 4.
    Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, Tan S, Berkowitz K, Hodis HN, Azen SP (2002) Preservation of pancreatic beta-cell function and prevention of type II diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 51:2796–2803CrossRefPubMedGoogle Scholar
  5. 5.
    Grundy SM (1999) Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 83:25F–29FCrossRefPubMedGoogle Scholar
  6. 6.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481CrossRefPubMedGoogle Scholar
  7. 7.
    Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458CrossRefPubMedGoogle Scholar
  8. 8.
    Krebs DL, Hilton DJ (2001) SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19:378–387CrossRefPubMedGoogle Scholar
  9. 9.
    Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921CrossRefPubMedGoogle Scholar
  10. 10.
    Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921–924CrossRefPubMedGoogle Scholar
  11. 11.
    Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924–929CrossRefPubMedGoogle Scholar
  12. 12.
    Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS, Starr R, Nicholson SE, Metcalf D, Nicola NA (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95:114–119CrossRefPubMedGoogle Scholar
  13. 13.
    Krebs DL, Hilton DJ (2000) SOCS: physiological suppressors of cytokine signaling. J Cell Sci 113(Pt 16):2813–2819PubMedGoogle Scholar
  14. 14.
    Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, Moritz RL, Cary D, Richardson R, Hausmann G, Kile BJ, Kent SB, Alexander WS, Metcalf D, Hilton DJ, Nicola NA, Baca M (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 96:2071–2076CrossRefPubMedGoogle Scholar
  15. 15.
    Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, Hattori K, Hatakeyama S, Yada M, Morita S, Kitamura T, Kato H, Nakayama K, Yoshimura A (2001) The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 276:12530–12538CrossRefPubMedGoogle Scholar
  16. 16.
    Howard JK, Flier JS (2006) Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 17:365–371CrossRefPubMedGoogle Scholar
  17. 17.
    Krebs DL, Hilton DJ (2003) A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci STKE 2003: PE6Google Scholar
  18. 18.
    Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1:619–625CrossRefPubMedGoogle Scholar
  19. 19.
    Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065CrossRefPubMedGoogle Scholar
  20. 20.
    Bjorbak C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr (2000) SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 275:40649–40657CrossRefPubMedGoogle Scholar
  21. 21.
    Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS (2004) Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 10:734–738CrossRefPubMedGoogle Scholar
  22. 22.
    Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A (2004) SOCS-3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med 10:739–743CrossRefPubMedGoogle Scholar
  23. 23.
    Dunn SL, Bjornholm M, Bates SH, Chen Z, Seifert M, Myers MG Jr (2005) Feedback inhibition of leptin receptor/Jak2 signaling via Tyr1138 of the leptin receptor and suppressor of cytokine signaling 3. Mol Endocrinol 19:925–938CrossRefPubMedGoogle Scholar
  24. 24.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMedGoogle Scholar
  25. 25.
    Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, Hotamisligil GS, Van Obberghen E (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMedGoogle Scholar
  26. 26.
    Peraldi P, Filloux C, Emanuelli B, Hilton DJ, Van Obberghen E (2001) Insulin induces suppressor of cytokine signaling-3 tyrosine phosphorylation through janus-activated kinase. J Biol Chem 276:24614–24620CrossRefPubMedGoogle Scholar
  27. 27.
    Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398CrossRefPubMedGoogle Scholar
  28. 28.
    Brambilla G, Cantafora A (2004) Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann Ist Super Sanita 40:241–244PubMedGoogle Scholar
  29. 29.
    Bellinger DA, Merricks EP, Nichols TC (2006) Swine models of type 2 diabetes mellitus: insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J 47:243–258PubMedGoogle Scholar
  30. 30.
    Larsen MO, Rolin B (2004) Use of the Gottingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J 45:303–313PubMedGoogle Scholar
  31. 31.
    Vodicka P, Smetana K Jr, Dvorankova B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlik J (2005) The miniature pig as an animal model in biomedical research. Ann NY Acad Sci 1049:161–171CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Lu RH, Luo GF, Pang WJ, Yang GS (2006) Effects of different cryoprotectants on the viability and biological characteristics of porcine preadipocyte. Cryobiology 53:240–247CrossRefPubMedGoogle Scholar
  33. 33.
    Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, Sharff KA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247CrossRefPubMedGoogle Scholar
  34. 34.
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356CrossRefPubMedGoogle Scholar
  35. 35.
    Hei YJ (1998) Recent progress in insulin signal transduction. J Pharmacol Toxicol Methods 40:123–135CrossRefPubMedGoogle Scholar
  36. 36.
    Ronn SG, Billestrup N, Mandrup-Poulsen T (2007) Diabetes and suppressors of cytokine signaling proteins. Diabetes 56:541–548CrossRefPubMedGoogle Scholar
  37. 37.
    Ueki K, Kondo T, Kahn CR (2004) Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol 24:5434–5446CrossRefPubMedGoogle Scholar
  38. 38.
    Virkamaki A, Ueki K, Kahn CR (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943CrossRefPubMedGoogle Scholar
  39. 39.
    Yang XP, Schaper F, Teubner A, Lammert F, Heinrich PC, Matern S, Siewert E (2005) Interleukin-6 plays a crucial role in the hepatic expression of SOCS3 during acute inflammatory processes in vivo. J Hepatol 43:704–710CrossRefPubMedGoogle Scholar
  40. 40.
    Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Shuang-Juan Yang
    • 1
  • Cheng-Quan Xu
    • 1
  • Jiang-Wei Wu
    • 1
  • Gong-She Yang
    • 1
    Email author
  1. 1.Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations