Molecular and Cellular Biochemistry

, Volume 341, Issue 1–2, pp 217–223 | Cite as

Superoxide dismutase, protease and lipase expression in clinical isolates of Staphylococcus aureus: a tool for antimicrobial drug discovery

Article

Abstract

The rising incidents of invasive infections due to multidrug resistant Staphylococcus aureus necessitate the exploration of newer targets for development of antibiotics. Pathogenicity of S. aureus is attributed to a wide range of virulence factors. The aim of this study was to screen the production of three virulence factors viz. extracellular protease, extracellular lipase and superoxide dismutase in human pathogenic strains of S. aureus for development of a test panel which could aid in screening of natural products of plant and microbial origin. 27 clinical isolates were compared for their enzyme expression profiles of which eight were finally selected. Sau G5 was the only protease producing organism selected in the test panel, while Sau G3 and Sau G9 were best SOD producers and Sau G16, Sau G18, Sau G22, Sau A5 and Sau A2 exhibited highest expression among different groups of clinical staphylococci.

Keywords

S. aureus Protease Lipase Superoxide dismutase Antimicrobial test panel Virulence factors Clinical isolates 

References

  1. 1.
    Lowy FD (1998) Staphylococcus aureus infections. N Eng J Med 339:520–532CrossRefGoogle Scholar
  2. 2.
    Moran GJ, Amii RN, Abrahamian FM, Talan DA (2005) Methicillin resistant Staphylococcus aureus in community- acquired skin infections. Emerg Infect Dis 11(6):928–930PubMedGoogle Scholar
  3. 3.
    Fowler VG Jr, Olsen MK, Corey GR, Woods CW, Cabell CH, Reller HB (2003) Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 163:2066–2072CrossRefPubMedGoogle Scholar
  4. 4.
    Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA 279:1537–1541CrossRefPubMedGoogle Scholar
  5. 5.
    Dubin G (2003) Defence against own arms: staphylococcal cysteine proteases and their inhibitors. Acta Biochimica Polon 50(3):715–724Google Scholar
  6. 6.
    Saxena S, Gomber C (2010) Surmounting antimicrobial resistance in the millennium superbug: Staphylococcus aureus. Cent Eur J Med 5(1):12–29CrossRefGoogle Scholar
  7. 7.
    Potempa J, Dubin A, Korzus G, Travis J (1988) Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J Biol Chem 263:2664–2667PubMedGoogle Scholar
  8. 8.
    Arvidson S (2000) Extracellular enzymes. In: Fischetti VA, Novick RP, Ferretti JJ, Potrnoy DA, Rood JL (eds) Gram-positive pathogens. American Society for Microbiology, Washington, DC, pp 379–385Google Scholar
  9. 9.
    McGavin MJ, Zaharadka C, Rice K, Scott JE (1997) Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 65:2621–2628PubMedGoogle Scholar
  10. 10.
    Travis J, Potempa J, Maeda H (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3:405–407CrossRefPubMedGoogle Scholar
  11. 11.
    Troller JA, Bozeman MA (1970) Isolation and characterization of staphylococcal lipase. Appl Microbiol 20(3):480–484PubMedGoogle Scholar
  12. 12.
    Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8PubMedGoogle Scholar
  13. 13.
    Clements MO, Watson SP, Foster SJ (1999) Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance and pathogenicity. J Bacteriol 181(13):3898–3903PubMedGoogle Scholar
  14. 14.
    Karavalos MH, Horsburgh MJ, Ingham E, Foster SJ (2003) Role and regulation of superoxide dismutases of Staphylococcus aureus. Microbiology 149:2749–2758CrossRefGoogle Scholar
  15. 15.
    Becerra MC, Paez PL, Larovere LE, Albesa I (2006) Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin. Mol Cell Biochem 285(1–2):29–34CrossRefPubMedGoogle Scholar
  16. 16.
    Valderas MW, Hart ME (2001) Identification and characterization of a second superoxide dismutase gene (sod M) from Staphylococcus aureus. J Bacteriol 183(11):3399–3407CrossRefPubMedGoogle Scholar
  17. 17.
    Kanafani H, Martin SE (1985) Catalase and superoxide dismutase activities in virulent and non-virulent Staphylococcus aureus isolates. J Clin Microbiol 21:607–610PubMedGoogle Scholar
  18. 18.
    National Committee for Clinical Laboratory Standards (2002) Performance standards for antimicrobial disc susceptibility tests, Document No. NCCLS M100-S12Google Scholar
  19. 19.
    EARSS (2005) New and updated protocols for antimicrobial susceptibility testing of pathogens under EARSS surveillanceGoogle Scholar
  20. 20.
    Zeng J, Teng F, Murray BE (2005) Gelatinase is important for translocation of Enterococcus faecalis across polarized human enterocyte like T84 cells. Infect Immun 73(3):1606–1612CrossRefPubMedGoogle Scholar
  21. 21.
    Papa MFD, Hancock LE, Thomas VE, Perego M (2007) Full activation of Enterococcus faecalis gelatinase by a C-terminal proteolytic cleavage. J Bacteriol 189(24):8835–8843CrossRefPubMedGoogle Scholar
  22. 22.
    Barriere C, Leroy-Setrin S, Talon R (2001) Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. J Appl Microb 91:514–519CrossRefGoogle Scholar
  23. 23.
    Kouker G, Jaeger KE (1997) Specific and sensitive plate assay for bacterial lipases. App Env Microbiol 53(1):211–213Google Scholar
  24. 24.
    Mikhal’chik EV, Ivanova AV, Anurov MV, Titkova AV, Penkov LY, Kharaeva ZF, Korkina LG (2004) Wound-healing effect of papaya-based preparation in experimental thermal trauma. Bull Exp Biol Med 6:560–562CrossRefGoogle Scholar
  25. 25.
    Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Salim BS, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175:3907–3919PubMedGoogle Scholar
  26. 26.
    Das D, Saha S, Bishayi B (2008) Intracellular survival of Staphylococcus aureus: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. Inflamm Res 57(7):340–349CrossRefPubMedGoogle Scholar
  27. 27.
    Karlsson A, Saravia-Otten P, Tegmark E, Morfeldt E, Arvidson S (2001) Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect Immun 69:4742–4748CrossRefPubMedGoogle Scholar
  28. 28.
    Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of extracellular proteases of Staphylococcus aureus. Microbiology 150:217–228CrossRefPubMedGoogle Scholar
  29. 29.
    Lomholt H, Andersen KE, Kilian M (2005) Staphylococcus aureus clonal dynamics and virulence factors in children with atopic dermatitis. J Investig Dermatol 125:977–982CrossRefPubMedGoogle Scholar
  30. 30.
    Miedzobrodzki J, Kaszycki P, Bialecka A, Kasprowicz A (2002) Proteolytic activity of Staphylococcus aureus strains isolated from the colonized skin of patients with acute-phase atopic dermatitis. Eur J Clin Microbiol Infect Dis 21(4):269–276CrossRefPubMedGoogle Scholar
  31. 31.
    Stumpe S, Scmid R, Stephens DL, Georgiou G, Bakker EP (1998) Identification of OmpT as the protease that hydrolyzes the antimicrobial peptide protamine before it enters growing cells of Escherichia coli. J Bacteriol 180:4002–4006PubMedGoogle Scholar
  32. 32.
    Ulvatne H, Haukland HH, Samuelsen O, Kramer M, Vorland LH (2002) Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J Antimicrob Chemother 50:461–467CrossRefPubMedGoogle Scholar
  33. 33.
    Rallof J, Hedstorm SA, Nilsson EP (1987) Positional specificity and substrate preference of purified staphylococcal lipase. Biochem Biophys Acta 921:37–377Google Scholar
  34. 34.
    Simons JW, Adams H, Cox RC, Dekker N, Gotz F, Slotboom AJ, Verheij HM (1996) The lipase from Staphylococcus aureus. Expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur J Biochem 242:760–769CrossRefPubMedGoogle Scholar
  35. 35.
    Kuroda M, Nagasaki S, Ito R, Ohta T (2007) Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. FEMS Microbiol Lett 273(1):28–34CrossRefPubMedGoogle Scholar
  36. 36.
    Ta CN, Shine WE, McCulley JP, Pandya A, Trattler W, Nobury JW (2003) Effects of minocycline on the ocular flora of patients with acne rosacea or seborrheic blepharitis. Cornea 22(6):545–548CrossRefPubMedGoogle Scholar
  37. 37.
    Xiong N, Hu C, Zhang Y, Chen S (2009) Interaction of sortase A and lipase 2 in the inhibition of Staphylococcus aureus biofilm formation. Arch Microbiol 191(2):879–884CrossRefPubMedGoogle Scholar
  38. 38.
    Cunha MLRS, Rugolo LMSS, Lopes CAM (2006) Study of virulence factors in coagulase-negative staphylococci isolated from newborns. Mem Inst Oswaldo Cruz 101(6):661–668CrossRefGoogle Scholar
  39. 39.
    Rollof J, Braconier JH, Soderstrom C, Ehle PN (1988) Interference of Staphylococcus aureus lipase with human granulocyte function. Eur J Clin Microbiol Infect Dis 7(4):505–510CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia

Personalised recommendations