Molecular and Cellular Biochemistry

, Volume 341, Issue 1–2, pp 17–31

Identification, characterization, and expression of a unique secretory lipase from the human pathogen Leishmania donovani

  • Alison M. Shakarian
  • Glen C. McGugan
  • Manju B. Joshi
  • Mary Stromberg
  • Lauren Bowers
  • Christine Ganim
  • Jessica Barowski
  • Dennis M. Dwyer
Article

Abstract

Lipases have been implicated to be of importance in the life cycle development, virulence, and transmission of a variety of parasitic organisms. Potential functions include the acquisition of host resources for energy metabolism and as simple building blocks for the synthesis of complex parasite lipids important for membrane remodeling and structural purposes. Using a molecular approach, we identified and characterized the structure of an LdLip3-lipase gene from the primitive trypanosomatid pathogen of humans, Leishmania donovani. The LdLip3 encodes a ~33 kDa protein, with a well-conserved substrate-binding and catalytic domains characteristic of members of the serine lipase-protein family. Further, we showed that LdLip3 mRNA is constitutively expressed by both the insect vector (i.e., promastigote) and mammalian (i.e., amastigote) life cycle developmental forms of this protozoan parasite. Moreover, a homologous episomal expression system was used to express an HA epitope-tagged LdLip3 chimeric construct (LdLip3::HA) in these parasites. Expression of the LdLip3 chimera was verified in these transfectants by Western blots and indirect immuno-fluorescence analyses. Results of coupled immuno-affinity purification and enzyme activity experiments demonstrated that the LdLip3::HA chimeric protein was secreted/released by transfected L. donovani parasites and that it possessed functional lipase enzyme activity. Taken together these observations suggest that this novel secretory lipase might play essential role(s) in the survival, growth, and development of this important group of human pathogens.

Keywords

Leishmania Human parasite Gene structure Trypanosomatid Kinetoplastid protozoan Lipase 

Abbreviations

aa

Amino acid

Ab

Antibody

bp

Base pair

DIG

Digoxigenin

FBS

Fetal bovine serum

gDNA

Genomic DNA

HA

Hemagglutinin

LdLip3

Gene encoding the secretory lipase of Leishmania donovani

4MU

4-Methylumbelliferone

nt

Nucleotide

oligo

Oligodeoxy-ribonucleotide

ORF

Open reading frame

PBS

Phosphate buffered saline

PCR

Polymerase chain reaction

RT

Reverse transcription

SDS-PAGE

Sodium dodecyl-sulfate polyacrylamide gel electrophoresis

SP

Signal peptide

SL

Spliced leader

References

  1. 1.
    UNDP/World Bank/World Health Organization (1999) Tropical disease research: progress 1997–1998: fourteenth programme report of UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14:229–243CrossRefPubMedGoogle Scholar
  3. 3.
    Tetley L, Coombs GH, Vickerman K (1986) The surface membrane of Leishmania mexicana mexicana: comparison of amastigote and promastigote using freeze-fracture cytochemistry. Z Parasitenkd 72(3):281–292CrossRefPubMedGoogle Scholar
  4. 4.
    Wassef MK, Fioretti TB, Dwyer DM (1985) Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids 20(2):108–115CrossRefPubMedGoogle Scholar
  5. 5.
    Berman JD (1987) Uptake, distribution and oxidation of fatty acids by Leishmania mexicana amastigotes. J Parasitol 73:555–560CrossRefPubMedGoogle Scholar
  6. 6.
    McConville M, de Souza D, Saunders E, Likic VA, Naderer T (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 23(8):368–374CrossRefPubMedGoogle Scholar
  7. 7.
    Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602CrossRefPubMedGoogle Scholar
  8. 8.
    Naderer T, McConville MJ (2008) The Leishmania-macrophage interaction: a metabolic perspective. Cell Microbiol 10(2):301–308PubMedGoogle Scholar
  9. 9.
    Tielens AGM, van Hellemond JJ (2009) Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol 25(10):482–490CrossRefPubMedGoogle Scholar
  10. 10.
    Opperdoes FR, Coombs GH (2007) Metabolism of Leishmania: proven and predicted. Trends Parasitol 23:149–158CrossRefPubMedGoogle Scholar
  11. 11.
    Hart DT, Coombs GH (1982) Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol 54:397–409CrossRefPubMedGoogle Scholar
  12. 12.
    Opperdoes FR, Michels PAM (2008) The metabolic repertoire of Leishmania and implications for drug discovery. In: Myler P, Fasel N (eds) Leishmania, after the genome, 1st edn. Caister Academic Press, Norfolk, UK, pp 123–158Google Scholar
  13. 13.
    Shakarian AM, Joshi MB, Ghedin E, Dwyer DM (2002) Molecular dissection of the functional domains of a unique, tartrate-resistant, surface membrane acid phosphatase in the primitive human pathogen Leishmania donovani. J Biol Chem 277:17994–18001CrossRefPubMedGoogle Scholar
  14. 14.
    Debrabant A, Bastien P, Dwyer DM (2001) A unique surface membrane anchored purine-salvage enzyme is conserved among a group of primitive eukaryotic human pathogens. Mol Cell Biochem 220:109–116CrossRefPubMedGoogle Scholar
  15. 15.
    Joshi MB, Dwyer DM (2007) Molecular and functional analyses of a novel class I secretory nuclease from the human pathogen, Leishmania donovani. J Biol Chem 282(13):10079–10095CrossRefPubMedGoogle Scholar
  16. 16.
    Debrabant A, Joshi MB, Pimenta PF, Dwyer DM (2004) Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol 34(2):205–217CrossRefPubMedGoogle Scholar
  17. 17.
    McCreath KJ, Gooday GW (1992) A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14:229–237CrossRefGoogle Scholar
  18. 18.
    Clayton C, Adams M, Almeida R et al (1998) Genetic nomenclature for Trypanosoma and Leishmania. Mol Biochem Parasitol 97:221–224CrossRefPubMedGoogle Scholar
  19. 19.
    Ivens AC, Peacock CS, Worthey EA et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309(5733):436–442CrossRefPubMedGoogle Scholar
  20. 20.
    Schneider A, McNally KP, Agabian N (1993) Splicing and 3′-processing of the tyrosine tRNA of Trypanosoma brucei. J Biol Chem 268:21868–21874PubMedGoogle Scholar
  21. 21.
    McCombie WR, Heiner C, Kelley JM, Fitzgerald MG, Gocayne JD (1992) Sequencing and analysis of genomic fragments from the NF1 locus. DNA Seq 2:289–296PubMedGoogle Scholar
  22. 22.
    Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395CrossRefPubMedGoogle Scholar
  23. 23.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  24. 24.
    Borst P (1986) Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem 55:701–732CrossRefPubMedGoogle Scholar
  25. 25.
    Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61:1157–1160CrossRefPubMedGoogle Scholar
  26. 26.
    Shakarian AM, Dwyer DM (1998) The Ld Cht1 gene encodes the secretory chitinase of the human pathogen Leishmania donovani. Gene. 208:315–322CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandes O, Murthy VK, Kurath U, Degrave WM, Campbell DA (1994) Mini-exon gene variation in human pathogenic Leishmania species. Mol Biochem Parasitol 66:261–271CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang WW, Charest H, Ghedin E, Matlashewski G (1996) Identification and over expression of the A2 amastigote-specific protein in Leishmania donovani. Mol Biochem Parasitol 78:79–90CrossRefPubMedGoogle Scholar
  29. 29.
    Charest H, Zhang WW, Matlashewski G (1996) The developmental expression of Leishmania donovani A2 amastigote-specific genes is post-transcriptionally mediated and involves elements located in the 3′-untranslated region. J Biol Chem 271:17081–17090CrossRefPubMedGoogle Scholar
  30. 30.
    Ghedin E, Charest H, Zhang WW, Debrabant A, Dwyer D, Matlashewski G (1998) Inducible expression of suicide genes in Leishmania donovani amastigotes. J Biol Chem 273:22997–23003CrossRefPubMedGoogle Scholar
  31. 31.
    Debrabant A, Ghedin E, Dwyer DM (2000) Dissection of the functional domains of the Leishmania surface membrane 3′-nucleotidase/nuclease, a unique member of the class I nuclease family. J Biol Chem 275:16366–16372CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang WW, Mendez S, Ghosh A, Myler P, Ivens A, Clos J, Sacks DL, Matlashewski G (2003) Comparison of the A2 gene locus in Leishmania donovani and Leishmania major and its control over cutaneous infection. J Biol Chem 278:35508–35515CrossRefPubMedGoogle Scholar
  33. 33.
    Charest H, Matlashewski G (1994) Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14:2975–2984PubMedGoogle Scholar
  34. 34.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  35. 35.
    Stiles JK, Hicock PI, Shah PH, Meade JC (1999) Genomic organization, transcription, splicing and gene regulation in Leishmania. Ann Trop Med Parasitol 93:781–807CrossRefPubMedGoogle Scholar
  36. 36.
    Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6CrossRefPubMedGoogle Scholar
  37. 37.
    von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105CrossRefGoogle Scholar
  38. 38.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefPubMedGoogle Scholar
  39. 39.
    Gerber LD, Kodukula K, Udenfriend S (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide. J Biol Chem 267:12168–12173PubMedGoogle Scholar
  40. 40.
    Teasdale RD, Jackson MR (1996) Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu Rev Cell Dev Biol 12:27–54CrossRefPubMedGoogle Scholar
  41. 41.
    Grimaldi G Jr, Tesh RB (1993) Leishmaniases of the new world: current concepts and implications for future research. Clin Microbiol Rev 6:230–250PubMedGoogle Scholar
  42. 42.
    Bates PA, Robertson CD, Tetley L, Coombs GH (1992) Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105:193–202CrossRefPubMedGoogle Scholar
  43. 43.
    Bates PA, Tetley L (1993) Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol 76:412–423CrossRefPubMedGoogle Scholar
  44. 44.
    Bates PA (1994) Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology 108:1–9CrossRefPubMedGoogle Scholar
  45. 45.
    Shakarian AM, Ellis SL, Mallinson DJ, Olafson RW, Dwyer DM (1997) Two tandemly arrayed genes encode the (histidine) secretory acid phosphatases of Leishmania donovani. Gene. 1 196(1–2):127–137Google Scholar
  46. 46.
    Slomiany BL, Slomiany A (1992) Mechanism of Helicobacter pylori pathogenesis: focus on mucus. J Clin Gastroenterol 14(Suppl 1):S114–S121CrossRefPubMedGoogle Scholar
  47. 47.
    König B, Jaeger KE, Sage AE, Vasil ML, König W (1996) Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes). Infect Immun 64(8):3252–3258PubMedGoogle Scholar
  48. 48.
    Straus DC, Lonon MK, Hutson JC (1992) Inhibition of rat alveolar macrophage phagocytic function by a Pseudomonas cepacia lipase. J Med Microbiol 37(5):335–340CrossRefPubMedGoogle Scholar
  49. 49.
    Voigt CA, Schäfer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42(3):364–375CrossRefPubMedGoogle Scholar
  50. 50.
    Stehr B, Felk A, Gácser A, Kretschmar M, Mähnss B, Neuber K, Hube B, Schäfer W (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4(4–5):401–408CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Alison M. Shakarian
    • 1
  • Glen C. McGugan
    • 2
  • Manju B. Joshi
    • 2
  • Mary Stromberg
    • 1
  • Lauren Bowers
    • 1
  • Christine Ganim
    • 1
  • Jessica Barowski
    • 1
  • Dennis M. Dwyer
    • 2
  1. 1.The Department of Biology and Biomedical SciencesSalve Regina UniversityNewportUSA
  2. 2.The Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural ResearchNIAID, NIHBethesdaUSA

Personalised recommendations