Advertisement

Molecular and Cellular Biochemistry

, Volume 339, Issue 1–2, pp 191–199 | Cite as

Characterization of zebrafish Esrom (Myc-binding protein 2) RCC1-like domain splice variants

  • Hui Wang
Article

Abstract

PHR protein family consists of C. elegan Rpm-1/Drosophila Highwire/Zebrafish Esrom/Mouse Phr-1/Human Pam. Esrom is required for correct neurites exiting the paused state at intermediate targets as well as pteridine synthesis. This study reports the identification and characterization of two novel Esrom splice variants, named splice variants 2 (splicing out 5′ 24 bp of exon 17) and 3 (splicing out 5′ 24 bp of exons 17 and 18). Polypeptides encoded by 5′ 24 bp of exons 17 and 18 are part of basic amino-acid-rich region inside Esrom RCC1-like domain (RLD). These two splice variants maintain the whole protein reading frame and alternative exons usage patterns are conserved with mammal. At different developmental stages and adult zebrafish tissues, abundances of these splice variants are different. Importantly, by yeast two-hybrid screen and confocal colocalization analysis, it was found that alternative splicing of exon 18 regulates Esrom RLD interaction with kinesin family member 22 and G protein beta-subunit 1. Taken together, these results suggest that Esrom RLD functions are regulated by alternative splicing at temporal and spatial-specific manner.

Keywords

Zebrafish Alternative splicing RCC1-like domain Yeast two hybrid Expressed sequence tag 

Notes

Acknowledgments

I thank group members of Dr Suresh JESUTHASAN of Temasek Life Sciences Laboratory for critical discussion in this work. My thanks also extend to Thierry JAFFREDO for careful reading and comments on this manuscript. This work was supported by research grant of Temask Life Sciences Laboratory of Singapore.

References

  1. 1.
    Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, Jin Y (2005) Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell 120:407–420. doi: 10.1016/j.cell.2004.12.017 CrossRefPubMedGoogle Scholar
  2. 2.
    Liao EH, Hung W, Abrams B, Zhen M (2004) An SCF-like ubiquitin ligase complex that controls presynaptic differentiation. Nature 430:345–350. doi: 10.1038/nature02647 CrossRefPubMedGoogle Scholar
  3. 3.
    McCabe BD, Hom S, Aberle H, Fetter RD, Marques G, Haerry TE, Wan H, O’Connor MB, Goodman CS, Haghighi AP (2004) Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41:891–905. doi: S089662730400073X CrossRefPubMedGoogle Scholar
  4. 4.
    Collins CA, Wairkar YP, Johnson SL, DiAntonio A (2006) Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51:57–69. doi: 10.1016/j.neuron.2006.05.026 CrossRefPubMedGoogle Scholar
  5. 5.
    Le Guyader S, Maier J, Jesuthasan S (2005) Esrom, an ortholog of PAM (protein associated with c-myc), regulates pteridine synthesis in the zebrafish. Dev Biol 277:378–386. doi: 10.1016/j.ydbio.2004.09.029 CrossRefPubMedGoogle Scholar
  6. 6.
    D’Souza J, Hendricks M, Le Guyader S, Subburaju S, Grunewald B, Scholich K, Jesuthasan S (2005) Formation of the retinotectal projection requires Esrom, an ortholog of PAM (protein associated with Myc). Development 132:247–256. doi: 10.1242/dev.01578 CrossRefPubMedGoogle Scholar
  7. 7.
    Hendricks M, Jesuthasan S (2009) PHR regulates growth cone pausing at intermediate targets through microtubule disassembly. J Neurosci 29:6593–6598. doi: 10.1523/jneurosci.1115-09.2009 CrossRefPubMedGoogle Scholar
  8. 8.
    Lewcock JW, Genoud N, Lettieri K, Pfaff SL (2007) The ubiquitin ligase Phr1 regulates axon outgrowth through modulation of microtubule dynamics. Neuron 56:604. doi: 20.10.1016/j.neuron.2007.09.009 CrossRefPubMedGoogle Scholar
  9. 9.
    Scholich K, Pierre S, Patel TB (2001) Protein associated with Myc (PAM) is a potent inhibitor of adenylyl cyclases. J Biol Chem 276:47583–47589. doi: 10.1074/jbc.M107816200 CrossRefPubMedGoogle Scholar
  10. 10.
    Pierre SC, Hausler J, Birod K, Geisslinger G, Scholich K (2004) PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J 23:3031–3040. doi: 10.1038/sj.emboj.7600321 CrossRefPubMedGoogle Scholar
  11. 11.
    Guo Q, Xie J, Dang CV, Liu ET, Bishop JM (1998) Identification of a large Myc-binding protein that contains RCC1-like repeats. Proc Natl Acad Sci USA 95:9172–9177CrossRefPubMedGoogle Scholar
  12. 12.
    Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS (2000) Highwire regulates synaptic growth in Drosophila. Neuron 26:313–329. doi: S0896-6273(00)81166-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392:97–101. doi: 10.1038/32204 CrossRefPubMedGoogle Scholar
  14. 14.
    Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL (2008) The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta 1783:1467–1479. doi: 10.1016/j.bbamcr.2008.03.015 CrossRefPubMedGoogle Scholar
  15. 15.
    Hood FE, Clarke PR (2007) RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. J Cell Sci 120:3436–3445. doi: 10.1242/jcs.009092 CrossRefPubMedGoogle Scholar
  16. 16.
    Albers M, Kranz H, Kober I, Kaiser C, Klink M, Suckow J, Kern R, Koegl M (2005) Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol Cell Proteomics 4:205–213. doi: 10.1074/mcp.M400169-MCP200 PubMedGoogle Scholar
  17. 17.
    Horiuchi T, Aigaki T (2006) Alternative trans-splicing: a novel mode of pre-mRNA processing. Biol Cell 98:135–140. doi: 10.1042/BC20050002 CrossRefPubMedGoogle Scholar
  18. 18.
    Santos TM, Han S, Bowser M, Sazani K, Beauchamp RL, Murthy V, Bhide PG, Ramesh V (2006) Alternative splicing in protein associated with Myc (Pam) influences its binding to c-Myc. J Neurosci Res 83:222–232. doi: 10.1002/jnr.20723 CrossRefPubMedGoogle Scholar
  19. 19.
    Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47. doi: 10.1016/j.cell.2006.06.023 CrossRefPubMedGoogle Scholar
  20. 20.
    Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB (2005) Identification and analysis of alternative splicing events conserved in human and mouse. Proc Natl Acad Sci USA 102:2850–2855. doi: 10.1073/pnas.0409742102 CrossRefPubMedGoogle Scholar
  21. 21.
    Soller M (2006) Pre-messenger RNA processing and its regulation: a genomic perspective. Cell Mol Life Sci. doi:  10.1007/s00018-005-5391-x
  22. 22.
    Oakley AJ, Harnnoi T, Udomsinprasert R, Jirajaroenrat K, Ketterman AJ, Wilce MC (2001) The crystal structures of glutathione S-transferases isozymes 1–3 and 1–4 from Anopheles dirus species B. Protein Sci 10:2176–2185. doi: 10.1110/ps.21201 PubMedGoogle Scholar
  23. 23.
    Pelisch F, Blaustein M, Kornblihtt AR, Srebrow A (2005) Cross-talk between signaling pathways regulates alternative splicing: a novel role for JNK. J Biol Chem 280:25461–25469. doi: 10.1074/jbc.M412007200 CrossRefPubMedGoogle Scholar
  24. 24.
    Matsushima K, Aosaki M, Tokuraku K, Hasan MR, Nakagawa H, Kotani S (2005) Identification of a neural cell specific variant of microtubule-associated protein 4. Cell Struct Funct 29:111–124. doi: JST.JSTAGE/csf/29.111 CrossRefPubMedGoogle Scholar
  25. 25.
    Vogler O, Barcelo JM, Ribas C, Escriba PV (2008) Membrane interactions of G proteins and other related proteins. Biochim Biophys Acta 1778:1640–1652. doi: 10.1016/j.bbamem.2008.03.008 CrossRefPubMedGoogle Scholar
  26. 26.
    Gao X, Sadana R, Dessauer CW, Patel TB (2007) Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem 282:294–302. doi: 10.1074/jbc.M607522200 CrossRefPubMedGoogle Scholar
  27. 27.
    Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S, Inoue J, Yamamota T (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle (KIF 22). EMBO J 15:457–467PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Developmental Neurobiology Group, Temasek Life Sciences LaboratoryNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.CNRS, UMR 7622, Biologie du Développement, Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations