Advertisement

Molecular and Cellular Biochemistry

, Volume 338, Issue 1–2, pp 271–282 | Cite as

Early predictors of cardiac decompensation in experimental volume overload

  • Christelle Oliver-Dussault
  • Alexis Ascah
  • Mariannick Marcil
  • Jimmy Matas
  • Sylvie Picard
  • Philippe Pibarot
  • Yan Burelle
  • Christian F. Deschepper
Article

Abstract

In humans, volume overload (VOL) increases the risk of sudden cardiac death, but there is also important inter-individual variability, presumably because of differences in genetic backgrounds. Although VOL has rapid effects on myocardial properties, it is not known to which extent the severity of these early responses correlate with the effect of sustained VOL on mortality. In order to test this question, we induced VOL in male rats from two genetically distinct strains [i.e., Sprague–Dawley (SD) and Wistar Kyoto-derived Hyperactive (WKHA) rats] by creating a surgical aorto-caval fistula (ACF). Only 36% of SD rats remained alive after 39 weeks of ACF, in contrast to 82% of the operated WKHA rats. We also monitored myocardial hemodynamic function, mitochondrial properties, left ventricular (LV) morphology and LV wall diastolic properties at different times ranging from 2 to 12 weeks after either ACF or sham surgery. ACF had a rapid impact on the LV walls of both rat strains, but the only variables that were affected to a greater extent in the mortality-prone SD strain were normalized LV weight, LV cavity area, and myocardial wall stiffness. In contrast, there were only marginal strain-related differences in the way ACF affected hemodynamic and mitochondrial functions. Thus, while early morphologic responses of LV walls to ACF (along with their downstream consequences on myocardial diastolic wall stress) correlated well with strain-dependent differences in late mortality, other functional changes showed no predictive effects. Close monitoring of early changes in cardiac geometry (as well as new methods to analyze myocardial diastolic strain) might, therefore, be helpful to further improve risk stratification in humans with volume overload cardiopathies.

Keywords

Volume overload cardiopathy Congestive heart failure Animal models Cardiac risk predictors Cardiac remodeling Genetic factors 

Notes

Ackowledgments

This study was supported by grants MOP-74460 and MOP-62694 from the Canadian Institute of Health Research (CIHR). YB is a Junior II Investigator of the Fonds de Recherche en Santé du Québec (FRSQ). We acknowledge the contribution of the FRSQ Cardiovascular Health Network for the ACF surgeries and follow-up hemodynamic investigations.

References

  1. 1.
    Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79CrossRefPubMedGoogle Scholar
  2. 2.
    Mann DL (2004) Basic mechanisms of left ventricular remodeling: the contribution of wall stress. J Card Fail 10:S202–S206CrossRefPubMedGoogle Scholar
  3. 3.
    Lorell BH, Carabello BA (2000) Left ventricular hypertrophy. Pathogenesis, detection and prognosis. Circulation 102:470–479PubMedGoogle Scholar
  4. 4.
    Carabello BA (2008) The current therapy for mitral regurgitation. J Am Coll Cardiol 52:319–326CrossRefPubMedGoogle Scholar
  5. 5.
    Ling LH, Enriquez-Sarano M, Seward JB, Tajik AJ, Schaff HV, Bailey KR, Frye RL (1996) Clinical outcome of mitral regurgitation due to flail leaflet. N Engl J Med 335:1417–1423CrossRefPubMedGoogle Scholar
  6. 6.
    Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, Scott C, Schaff HV, Tajik AJ (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883CrossRefPubMedGoogle Scholar
  7. 7.
    Grigioni F, Enriquez-Sarano M, Ling LH, Bailey KR, Seward JB, Tajik AJ, Frye RL (1999) Sudden death in mitral regurgitation due to flail leaflet. J Am Coll Cardiol 34:2078–2085CrossRefPubMedGoogle Scholar
  8. 8.
    Otto CM (2003) Timing of surgery in mitral regurgitation. Heart 89:100–105CrossRefPubMedGoogle Scholar
  9. 9.
    Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H, Sanada S, Kim J, Ogita H, Kuzuya T, Node K, Kitakaze M, Hori M (2002) Echocadiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol 282:H1703–H1708Google Scholar
  10. 10.
    Dolgilevich SM, Siri FM, Atlas SA, Eng C (2001) Changes in collagenase and collagen gene expression after induction of aortocaval fistula in rats. Am J Physiol Heart Circ Physiol 281:H207–H214PubMedGoogle Scholar
  11. 11.
    Brower GL, Chancey AL, Thanigaraj S, Matsubara BB, Janicki JS (2002) Cause and effect relationship between myocardial mast cell number and matrix metalloproteinase activity. Am J Physiol Heart Circ Physiol 283:H518–H525PubMedGoogle Scholar
  12. 12.
    Ryan TD, Rothstein EC, Aban I, Tallaj JA, Husain A, Lucchesi PA, Dell’Italia LJ (2007) Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol 49:811–821Google Scholar
  13. 13.
    Brower GL, Henegar JR, Janicki JS (1996) Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol 271:H2071–H2078PubMedGoogle Scholar
  14. 14.
    Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol 280:H674–H683Google Scholar
  15. 15.
    Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94:752–763PubMedGoogle Scholar
  16. 16.
    Matas J, Marcil M, Ascah A, Deschepper CF, Burelle Y. Implication of cyclophilin-D and the mitochondrial permeability transition pore in mitochondrial vulnerability of compensated myocardial hypertrophy. FASEB Journal 22, 751.7. 2008Google Scholar
  17. 17.
    Souzeau E, Belanger S, Picard S, Deschepper CF (2005) Dietary isoflavones during pregnancy and lactation provide cardioprotection to offspring rats in adulthood. Am J Physiol Heart Circ Physiol 289:H715–H721CrossRefPubMedGoogle Scholar
  18. 18.
    Deschepper CF, Picard S, Thibault G, Touyz R, Rouleau JL (2002) Characterization of left ventricular myocardium, isolated cardiomyocytes and blood pressure in WKHA and WKY rats. Am J Physiol 82:H149–H155Google Scholar
  19. 19.
    Borlaug BA, Kass DA (2006) Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc Med 16:273–279CrossRefPubMedGoogle Scholar
  20. 20.
    Watanabe S, Shite J, Takaoka H, Shinke T, Imuro Y, Ozawa T, Otake H, Matsumoto D, Ogasawara D, Paredes OL, Yokoyama M (2006) Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. Eur Heart J 27:832–838CrossRefPubMedGoogle Scholar
  21. 21.
    Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96:1991–1998PubMedGoogle Scholar
  22. 22.
    De Stefano LM, Matsubara LS, Matsubara BB (2006) Myocardial dysfunction with increased ventricular compliance in volume overload hypertrophy. Eur J Heart Fail 8:784–789CrossRefPubMedGoogle Scholar
  23. 23.
    Marcil M, Ascah A, Matas J, Belanger S, Deschepper CF, Burelle Y (2006) Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. J Mol Cell Cardiol 41:998–1009CrossRefPubMedGoogle Scholar
  24. 24.
    Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A (2003) Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol 285:H2587–H2591PubMedGoogle Scholar
  25. 25.
    Brown S, Worsfold M, Sharp C (2001) Microplate assay for the measurement of hydroxyproline in acid-hydrolyzed tissue samples. Biotechniques 30:42–48Google Scholar
  26. 26.
    Cohn JN (1995) Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 91:2504–2507PubMedGoogle Scholar
  27. 27.
    Jacob R, Gulch RW (1998) The functional significance of ventricular geometry for the transition from hypertrophy to cardiac failure. Does a critical degree of structural dilatation exist? Basic Res Cardiol 93:423–429CrossRefPubMedGoogle Scholar
  28. 28.
    Mann DL, Bristow MR (2005) Mechanisms and models in heart failure. The biochemical model and beyond. Circulation 111:2837–2849CrossRefPubMedGoogle Scholar
  29. 29.
    Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart JA Jr (2004) The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 9:33–42CrossRefPubMedGoogle Scholar
  30. 30.
    Behr TM, Wang X, Aiyar N, Coatney RW, Li X, Koster P, Angermann CE, Ohlstein E, Feuerstein GZ, Winaver J (2000) Monocyte chemoattractant protein-1 is upregulated in rats with volume-overload congestive heart failure. Circulation 102:1315–1322PubMedGoogle Scholar
  31. 31.
    Chancey AL, Brower GL, Janicki JS (2002) Cardiac mast cell-mediated activation of gelatinase and alteration of ventricular diastolic function. Am J Physiol Heart Circ Physiol 282:H2152–H2158PubMedGoogle Scholar
  32. 32.
    Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D (1997) Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med 336:1350–1355CrossRefPubMedGoogle Scholar
  33. 33.
    Weber KT, Sun Y, Tyagi SC, Cleutjens JP (1994) Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292CrossRefPubMedGoogle Scholar
  34. 34.
    Namba T, Tsutsui H, Tagawa H, Takahashi M, Saito K, Kozai T, Usui M, Imanaka-Yoshida K, Imaizumi T, Takeshita A (1997) Regulation of fibrillar collagen gene expression and protein accumulation in volume-overloaded cardiac hypertrophy. Circulation 95:2448–2454PubMedGoogle Scholar
  35. 35.
    Woodiwiss AJ, Tsotetsi OJ, Sprott S, Lancaster EJ, Mela T, Chung ES, Meyer TE, Norton GR (2001) Reduction in myocardial collagen cross-linking parallels left ventricular dilatation in rat models of systolic chamber dysfunction. Circulation 103:155–160PubMedGoogle Scholar
  36. 36.
    Iimoto DS, Covell JW, Harper E (1988) Increase in cross-linking of type I and type III collagens associated with volume-overload hypertrophy. Circ Res 63:399–408PubMedGoogle Scholar
  37. 37.
    Caulfield JB, Norton P, Weaver RD (1992) Cardiac dilatation associated with collagen alterations. Mol Cell Biochem 118:171–179CrossRefPubMedGoogle Scholar
  38. 38.
    Spinale FG, Coker ML, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225–238CrossRefPubMedGoogle Scholar
  39. 39.
    Avierinos JF, Detaint D, Messika-Zeitoun D, Mohty D, Enriquez-Sarano M (2008) Risk, determinants, and outcome implications of progression of mitral regurgitation after diagnosis of mitral valve prolapse in a single community. Am J Cardiol 101:662–667CrossRefPubMedGoogle Scholar
  40. 40.
    Enriquez-Sarano M, Basmadjian AJ, Rossi A, Bailey KR, Seward JB, Tajik AJ (1999) Progression of mitral regurgitation: a prospective Doppler echocardiographic study. J Am Coll Cardiol 34:1137–1144CrossRefPubMedGoogle Scholar
  41. 41.
    Svenson KL, Von SR, Magnani PA, Suetin HR, Paigen B, Naggert JK, Li R, Churchill GA, Peters LL (2007) Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J Appl Physiol 102:2369–2378CrossRefPubMedGoogle Scholar
  42. 42.
    Lee R, Marwick TH (2007) Assessment of subclinical left ventricular dysfunction in asymptomatic mitral regurgitation. Eur J Echocardiogr 8:175–184CrossRefPubMedGoogle Scholar
  43. 43.
    Bonow RO, Carabello BA, Kanu C, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS, SC Smith Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Page RL, Riegel B (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114:e84–231CrossRefPubMedGoogle Scholar
  44. 44.
    Edvardsen T, Skulstad H, Aakhus S, Urheim S, Ihlen H (2001) Regional myocardial systolic function during acute myocardial ischemia assessed by strain Doppler echocardiography. J Am Coll Cardiol 37:726–730CrossRefPubMedGoogle Scholar
  45. 45.
    Lee R, Hanekom L, Marwick TH, Leano R, Wahi S (2004) Prediction of subclinical left ventricular dysfunction with strain rate imaging in patients with asymptomatic severe mitral regurgitation. Am J Cardiol 94:1333–1337CrossRefPubMedGoogle Scholar
  46. 46.
    Marwick TH, Leano RL, Brown J, Sun JP, Hoffman R, Lysyanski P, Becker M, Thomas JD (2009) Myocardial strain measurements with 2-dimensional speckle-tracking echocardiography. J Am Coll Cardiol Img 2:80–84Google Scholar
  47. 47.
    Layland J, Young IS, Altringham JD (1995) The length dependence of work production in rat papillary muscles in vitro. J Exp Biol 198:2491–2499PubMedGoogle Scholar
  48. 48.
    Kentish JC, Stienen GJ (1994) Differential effects of length on maximum force production and myofibrillar ATPase activity in rat skinned cardiac muscle. J Physiol 475:175–184PubMedGoogle Scholar
  49. 49.
    Petkova-Kirova PS, Gursoy E, Mehdi H, McTiernan CF, London B, Salama G (2006) Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor-alpha. Am J Physiol Heart Circ Physiol 290:H2098–H2107CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  • Christelle Oliver-Dussault
    • 1
  • Alexis Ascah
    • 2
  • Mariannick Marcil
    • 1
  • Jimmy Matas
    • 2
  • Sylvie Picard
    • 1
  • Philippe Pibarot
    • 3
  • Yan Burelle
    • 2
  • Christian F. Deschepper
    • 1
  1. 1.Experimental Cardiovascular Biology Research UnitInstitut de Recherches Cliniques de Montréal (IRCM)MontrealCanada
  2. 2.Department of KinesiologyUniversité de MontréalMontrealCanada
  3. 3.Centre de Recherche de l’Hôpital LavalUniversité LavalQuebecCanada

Personalised recommendations