Molecular and Cellular Biochemistry

, Volume 334, Issue 1–2, pp 157–168 | Cite as

Guanylate cyclases and associated activator proteins in retinal disease

  • David M. Hunt
  • Prateek Buch
  • Michel Michaelides


Two isoforms of guanylate cyclase, GC1 and GC2 encoded by GUCY2D and GUCY2F, are responsible for the replenishment of cGMP in photoreceptors after exposure to light. Both are required for the normal kinetics of photoreceptor sensitivity and recovery, although disease mutations are restricted to GUCY2D. Recessive mutations in this gene cause the severe early-onset blinding disorder Leber congenital amaurosis whereas dominant mutations result in a later onset less severe cone–rod dystrophy. Cyclase activity is regulated by Ca2+ which binds to the GC-associated proteins, GCAP1 and GCAP2 encoded by GUCA1A and GUCA1B, respectively. No recessive mutations in either of these genes have been reported. Dominant missense mutations are largely confined to the Ca2+-binding EF hands of the proteins. In a similar fashion to the disease mechanism for the dominant GUCY2D mutations, these mutations generally alter the sensitivity of the cyclase to inhibition as Ca2+ levels rise following a light flash.


Phototransduction Retinal dystrophy 


  1. 1.
    Goraczniak R, Duda T, Sharma RK (1997) Structural and functional characterization of a second subfamily member of the calcium-modulated bovine rod outer segment membrane guanylate cyclase, ROS-GC2. Biochem Biophys Res Commun 234:666–670CrossRefPubMedGoogle Scholar
  2. 2.
    Goraczniak RM, Duda T, Sitaramayya A, Sharma RK (1994) Structural and functional characterization of the rod outer segment membrane guanylate cyclase. Biochem J 302:455–461PubMedGoogle Scholar
  3. 3.
    Yang RB, Foster DC, Garbers DL, Fulle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606CrossRefPubMedGoogle Scholar
  4. 4.
    Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473CrossRefPubMedGoogle Scholar
  5. 5.
    Dizhoor AM, Hurley JB (1999) Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods 19:521–531CrossRefPubMedGoogle Scholar
  6. 6.
    Lange C, Duda T, Beyermann M, Sharma RK, Koch KW (1999) Regions in vertebrate photoreceptor guanylyl cyclase ROS-GC1 involved in Ca(2+)-dependent regulation by guanylyl cyclase-activating protein GCAP-1. FEBS Lett 460:27–31CrossRefPubMedGoogle Scholar
  7. 7.
    Krylov DM, Hurley JB (2001) Identification of proximate regions in a complex of retinal guanylyl cyclase 1 and guanylyl cyclase-activating protein-1 by a novel mass spectrometry-based method. J Biol Chem 276:30648–30654CrossRefPubMedGoogle Scholar
  8. 8.
    Sokal I, Haeseleer F, Arendt A, Adman ET, Hargrave PA, Palczewski K (1999) Identification of a guanylyl cyclase-activating protein-binding site within the catalytic domain of retinal guanylyl cyclase 1. Biochemistry 38:1387–1393CrossRefPubMedGoogle Scholar
  9. 9.
    Duda T, Goraczniak R, Surgucheva I, Rudnicka-Nawrot M, Gorczyca WA, Palczewski K, Sitaramayya A, Baehr W, Sharma RK (1996) Calcium modulation of bovine photoreceptor guanylate cyclase. Biochemistry 35:8478–8482CrossRefPubMedGoogle Scholar
  10. 10.
    Laura RP, Hurley JB (1998) The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein-2. Biochemistry 37:11264–11271CrossRefPubMedGoogle Scholar
  11. 11.
    Tucker CL, Laura RP, Hurley JB (1997) Domain-specific stabilization of photoreceptor membrane guanylyl cyclase by adenine nucleotides and guanylyl cyclase activating proteins (GCAPs). Biochemistry 36:11995–12000CrossRefPubMedGoogle Scholar
  12. 12.
    Duda T, Koch KW (2002) Retinal diseases linked with photoreceptor guanylate cyclase. Mol Cell Biochem 230:129–138CrossRefPubMedGoogle Scholar
  13. 13.
    Seebacher T, Beitz E, Kumagami H, Wild K, Ruppersberg JP, Schultz JE (1999) Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear. Hear Res 127:95–102CrossRefPubMedGoogle Scholar
  14. 14.
    Venkataraman V, Nagele R, Duda T, Sharma RK (2000) Rod outer segment membrane guanylate cyclase type 1-linked stimulatory and inhibitory calcium signaling systems in the pineal gland: biochemical, molecular, and immunohistochemical evidence. Biochemistry 39:6042–6052CrossRefPubMedGoogle Scholar
  15. 15.
    Ramamurthy V, Tucker C, Wilkie SE, Daggett V, Hunt DM, Hurley JB (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276:26218–26229CrossRefPubMedGoogle Scholar
  16. 16.
    Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742CrossRefPubMedGoogle Scholar
  17. 17.
    Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847CrossRefPubMedGoogle Scholar
  18. 18.
    Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897PubMedGoogle Scholar
  19. 19.
    Leber T (1869) Ueber Retinitis pigmentosa und angeborene Amaurose. Albrecht von Graefes Arch Ophthal 15:1–25CrossRefGoogle Scholar
  20. 20.
    Koenekoop RK (2004) An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 49:379–398CrossRefPubMedGoogle Scholar
  21. 21.
    Kaplan J (2008) Leber congenital amaurosis: from darkness to spotlight. Ophthalmic Genet 29:92–98CrossRefPubMedGoogle Scholar
  22. 22.
    Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frezal J, Dufier JL, Pittler S, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464CrossRefPubMedGoogle Scholar
  23. 23.
    Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T, Munier F, Santos L, Shalev S, Zafeiriou D, Dufier JL, Munnich A, Rozet JM, Kaplan J (2004) Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 23:306–317CrossRefPubMedGoogle Scholar
  24. 24.
    den Hollander AI, Roepman R, Koenekoop RK, Cremers FP (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27:391–419CrossRefGoogle Scholar
  25. 25.
    Dharmaraj SR, Silva ER, Pina AL, Li YY, Yang JM, Carter CR, Loyer MK, El-Hilali HK, Traboulsi EK, Sundin OK, Zhu DK, Koenekoop RK, Maumenee IH (2000) Mutational analysis and clinical correlation in Leber congenital amaurosis. Ophthalmic Genet 21:135–150PubMedGoogle Scholar
  26. 26.
    Lotery AJ, Namperumalsamy P, Jacobson SG, Weleber RG, Fishman GA, Musarella MA, Hoyt CS, Heon E, Levin A, Jan J, Lam B, Carr RE, Franklin A, Radha S, Andorf JL, Sheffield VC, Stone EM (2000) Mutation analysis of 3 genes in patients with Leber congenital amaurosis. Arch Ophthalmol 118:538–543PubMedGoogle Scholar
  27. 27.
    Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, van Schooneveld MJ, de Jong PT, Bergen AA (2005) Identification of mutations in the AIPL1, CRB1, GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis pigmentosa. J Med Genet 42:e67CrossRefPubMedGoogle Scholar
  28. 28.
    Zernant J, Kulm M, Dharmaraj S, den Hollander AI, Perrault I, Preising MN, Lorenz B, Kaplan J, Cremers FP, Maumenee I, Koenekoop RK, Allikmets R (2005) Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles. Invest Ophthalmol Vis Sci 46:3052–3059CrossRefPubMedGoogle Scholar
  29. 29.
    Simonelli F, Ziviello C, Testa F, Rossi S, Fazzi E, Bianchi PE, Fossarello M, Signorini S, Bertone C, Galantuomo S, Brancati F, Valente EM, Ciccodicola A, Rinaldi E, Auricchio A, Banfi S (2007) Clinical and molecular genetics of Leber’s congenital amaurosis: a multicenter study of Italian patients. Invest Ophthalmol Vis Sci 48:4284–4290CrossRefPubMedGoogle Scholar
  30. 30.
    Avila-Fernandez A, Vallespin E, Cantalapiedra D, Riveiro-Alvarez R, Gimenez A, Trujillo-Tiebas MJ, Ayuso C (2007) Novel human pathological mutations. Gene symbol: GUCY2D. Disease: early onset retinitis pigmentosa. Hum Genet 121:650–651PubMedGoogle Scholar
  31. 31.
    Vallespin E, Cantalapiedra D, Riveiro-Alvarez R, Wilke R, Aguirre-Lamban J, Avila-Fernandez A, Lopez-Martinez MA, Gimenez A, Trujillo-Tiebas MJ, Ramos C, Ayuso C (2007) Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. Invest Ophthalmol Vis Sci 48:5653–5661CrossRefPubMedGoogle Scholar
  32. 32.
    Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8:578–582CrossRefPubMedGoogle Scholar
  33. 33.
    Milam AH, Barakat MR, Gupta N, Rose L, Aleman TS, Pianta MJ, Cideciyan AV, Sheffield VC, Stone EM, Jacobson SG (2003) Clinicopathologic effects of mutant GUCY2D in Leber congenital amaurosis. Ophthalmology 110:549–558CrossRefPubMedGoogle Scholar
  34. 34.
    Duda T, Krishnan A, Venkataraman V, Lange C, Koch KW, Sharma RK (1999) Mutations in the rod outer segment membrane guanylate cyclase in a cone-rod dystrophy cause defects in calcium signaling. Biochemistry 38:13912–13919CrossRefPubMedGoogle Scholar
  35. 35.
    Duda T, Venkataraman V, Goraczniak R, Lange C, Koch KW, Sharma RK (1999) Functional consequences of a rod outer segment membrane guanylate cyclase (ROS-GC1) gene mutation linked with Leber’s congenital amaurosis. Biochemistry 38:509–515CrossRefPubMedGoogle Scholar
  36. 36.
    Rozet JM, Perrault I, Gerber S, Hanein S, Barbet F, Ducroq D, Souied E, Munnich A, Kaplan J (2001) Complete abolition of the retinal-specific guanylyl cyclase (retGC-1) catalytic ability consistently leads to Leber congenital amaurosis (LCA). Invest Ophthalmol Vis Sci 42:1190–1192PubMedGoogle Scholar
  37. 37.
    Tucker CL, Ramamurthy V, Pina AL, Loyer M, Dharmaraj S, Li Y, Maumenee IH, Hurley JB, Koenekoop RK (2004) Functional analyses of mutant recessive GUCY2D alleles identified in Leber congenital amaurosis patients: protein domain comparisons and dominant negative effects. Mol Vis 10:297–303PubMedGoogle Scholar
  38. 38.
    Perrault I, Hanein S, Gerber S, Lebail B, Vlajnik P, Barbet F, Ducroq D, Dollfus H, Dufier JL, Munnich A, Kaplan J, Rozet JM (2005) A novel mutation in the GUCY2D gene responsible for an early onset severe RP different from the usual GUCY2D-LCA phenotype. Hum Mutat 25:775CrossRefGoogle Scholar
  39. 39.
    Coleman JE, Zhang Y, Brown GA, Semple-Rowland SL (2004) Cone cell survival and downregulation of GCAP1 protein in the retinas of GC1 knockout mice. Invest Ophthalmol Vis Sci 45:3397–3403CrossRefPubMedGoogle Scholar
  40. 40.
    Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K, Hauswirth WW, Semple-Rowland SL (2006) Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 47:3745–3753CrossRefPubMedGoogle Scholar
  41. 41.
    Coleman JE, Semple-Rowland SL (2005) GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 46:12–16CrossRefPubMedGoogle Scholar
  42. 42.
    Ulshafer RJ, Allen C, Dawson WW, Wolf ED (1984) Hereditary retinal degeneration in the Rhode Island Red chicken. I. Histology and ERG. Exp Eye Res 39:125–135CrossRefPubMedGoogle Scholar
  43. 43.
    Semple-Rowland SL, Lee NR, Van Hooser JP, Palczewski K, Baehr W (1998) A null mutation in the photoreceptor guanylate cyclase gene causes the retinal degeneration chicken phenotype. Proc Natl Acad Sci USA 95:1271–1276CrossRefPubMedGoogle Scholar
  44. 44.
    Semple-Rowland SL, Cheng KM (1999) rd and rc Chickens carry the same GC1 null allele (GUCY1*). Exp Eye Res 69:579–581CrossRefPubMedGoogle Scholar
  45. 45.
    Williams ML, Coleman JE, Haire SE, Aleman TS, Cideciyan AV, Sokal I, Palczewski K, Jacobson SG, Semple-Rowland SL (2006) Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 3:e201CrossRefPubMedGoogle Scholar
  46. 46.
    Michaelides M, Hardcastle AJ, Hunt DM, Moore AT (2006) Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol 51:232–258CrossRefPubMedGoogle Scholar
  47. 47.
    Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184CrossRefPubMedGoogle Scholar
  48. 48.
    Kelsell RE, Gregory-Evans K, Gregory-Evans CY, Holder GE, Jay MR, Weber BH, Moore AT, Bird AC, Hunt DM (1998) Localization of a gene (CORD7) for a dominant cone-rod dystrophy to chromosome 6q. Am J Hum Genet 63:274–279CrossRefPubMedGoogle Scholar
  49. 49.
    Downes SM, Payne AM, Kelsell RE, Fitzke FW, Holder GE, Hunt DM, Moore AT, Bird AC (2001) Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1. Arch Ophthalmol 119:1667–1673PubMedGoogle Scholar
  50. 50.
    Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW, Holder GE, Simunovic M, Mollon JD, Taylor R, Hunt DM, Bird AC, Moore AT (2000) Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology 107:55–61CrossRefPubMedGoogle Scholar
  51. 51.
    Kitiratschky VB, Wilke R, Renner AB, Kellner U, Vadala M, Birch DG, Wissinger B, Zrenner E, Kohl S (2008) Mutation analysis identifies GUCY2D as the major gene responsible for autosomal dominant progressive cone degeneration. Invest Ophthalmol Vis Sci 49:5015–5023CrossRefPubMedGoogle Scholar
  52. 52.
    Payne AM, Morris AG, Downes SM, Johnson S, Bird AC, Moore AT, Bhattacharya SS, Hunt DM (2001) Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38:611–614CrossRefPubMedGoogle Scholar
  53. 53.
    Perrault I, Rozet JM, Gerber S, Kelsell RE, Souied E, Cabot A, Hunt DM, Munnich A, Kaplan J (1998) A retGC-1 mutation in autosomal dominant cone-rod dystrophy. Am J Hum Genet 63:651–654CrossRefPubMedGoogle Scholar
  54. 54.
    Ito S, Nakamura M, Ohnishi Y, Miyake Y (2004) Autosomal dominant cone-rod dystrophy with R838H and R838C mutations in the GUCY2D gene in Japanese patients. Jpn J Ophthalmol 48:228–235CrossRefPubMedGoogle Scholar
  55. 55.
    Small KW, Silva-Garcia R, Udar N, Nguyen EV, Heckenlively JR (2008) New mutation, P575L, in the GUCY2D gene in a family with autosomal dominant progressive cone degeneration. Arch Ophthalmol 126:397–403CrossRefPubMedGoogle Scholar
  56. 56.
    Tucker CL, Woodcock SC, Kelsell RE, Ramamurthy V, Hunt DM, Hurley JB (1999) Biochemical analysis of a dimerization domain mutation in RetGC-1 associated with dominant cone-rod dystrophy. Proc Natl Acad Sci USA 96:9039–9044CrossRefPubMedGoogle Scholar
  57. 57.
    Wilkie SE, Newbold RJ, Deery E, Walker CE, Stinton I, Ramamurthy V, Hurley JB, Bhattacharya SS, Warren MJ, Hunt DM (2000) Functional characterization of missense mutations at codon 838 in retinal guanylate cyclase correlates with disease severity in patients with autosomal dominant cone-rod dystrophy. Hum Mol Genet 9:3065–3073CrossRefPubMedGoogle Scholar
  58. 58.
    Peshenko IV, Moiseyev GP, Olshevskaya EV, Dizhoor AM (2004) Factors that determine Ca2+ sensitivity of photoreceptor guanylyl cyclase. Kinetic analysis of the interaction between the Ca2+-bound and the Ca2+-free guanylyl cyclase activating proteins (GCAPs) and recombinant photoreceptor guanylyl cyclase 1 (RetGC-1). Biochemistry 43:13796–13804CrossRefPubMedGoogle Scholar
  59. 59.
    Baehr W, Palczewski K (2007) Guanylate cyclase-activating proteins and retina disease. In: Carafoli E, Brini M (eds) Calcium signalling and disease. Springer, Netherlands, pp 71–91CrossRefGoogle Scholar
  60. 60.
    Imanishi Y, Li N, Sokal I, Sowa ME, Lichtarge O, Wensel TG, Saperstein DA, Baehr W, Palczewski K (2002) Characterization of retinal guanylate cyclase-activating protein 3 (GCAP3) from zebrafish to man. Eur J Neurosci 15:63–78CrossRefPubMedGoogle Scholar
  61. 61.
    Cuenca N, Lopez S, Howes K, Kolb H (1998) The localization of guanylyl cyclase-activating proteins in the mammalian retina. Invest Ophthalmol Vis Sci 39:1243–1250PubMedGoogle Scholar
  62. 62.
    Howes K, Bronson JD, Dang YL, Li N, Zhang K, Ruiz C, Helekar B, Lee M, Subbaraya I, Kolb H, Chen J, Baehr W (1998) Gene array and expression of mouse retina guanylate cyclase activating proteins 1 and 2. Invest Ophthalmol Vis Sci 39:867–875PubMedGoogle Scholar
  63. 63.
    Otto-Bruc A, Fariss RN, Haeseleer F, Huang J, Buczylko J, Surgucheva I, Baehr W, Milam AH, Palczewski K (1997) Localization of guanylate cyclase-activating protein 2 in mammalian retinas. Proc Natl Acad Sci USA 94:4727–4732CrossRefPubMedGoogle Scholar
  64. 64.
    Imanishi Y, Yang L, Sokal I, Filipek S, Palczewski K, Baehr W (2004) Diversity of guanylate cyclase-activating proteins (GCAPs) in teleost fish: characterization of three novel GCAPs (GCAP4, GCAP5, GCAP7) from zebrafish (Danio rerio) and prediction of eight GCAPs (GCAP1–8) in pufferfish (Fugu rubripes). J Mol Evol 59:204–217CrossRefPubMedGoogle Scholar
  65. 65.
    Palczewski K, Sokal I, Baehr W (2004) Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322:1123–1130CrossRefPubMedGoogle Scholar
  66. 66.
    Kachi S, Nishizawa Y, Olshevskaya E, Yamazaki A, Miyake Y, Wakabayashi T, Dizhoor A, Usukura J (1999) Detailed localization of photoreceptor guanylate cyclase activating protein-1 and -2 in mammalian retinas using light and electron microscopy. Exp Eye Res 68:465–473CrossRefPubMedGoogle Scholar
  67. 67.
    Surguchov A, Bronson JD, Banerjee P, Knowles JA, Ruiz C, Subbaraya I, Palczewski K, Baehr W (1997) The human GCAP1 and GCAP2 genes are arranged in a tail-to-tail array on the short arm of chromosome 6 (p21.1). Genomics 39:312–322CrossRefPubMedGoogle Scholar
  68. 68.
    Ermilov AN, Olshevskaya EV, Dizhoor AM (2001) Instead of binding calcium, one of the EF-hand structures in guanylyl cyclase activating protein-2 is required for targeting photoreceptor guanylyl cyclase. J Biol Chem 276:48143–48148PubMedGoogle Scholar
  69. 69.
    Stephen R, Palczewski K, Sousa MC (2006) The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. J Mol Biol 359:266–275CrossRefPubMedGoogle Scholar
  70. 70.
    Hughes RE, Brzovic PS, Dizhoor AM, Klevit RE, Hurley JB (1998) Ca2+-dependent conformational changes in bovine GCAP-2. Protein Sci 7:2675–2680CrossRefPubMedGoogle Scholar
  71. 71.
    Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem 272:14327–14333CrossRefPubMedGoogle Scholar
  72. 72.
    Stephen R, Bereta G, Golczak M, Palczewski K, Sousa MC (2007) Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1. Structure 15:1392–1402CrossRefPubMedGoogle Scholar
  73. 73.
    Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J (2001) Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors. Proc Natl Acad Sci USA 98:9948–9953CrossRefPubMedGoogle Scholar
  74. 74.
    Howes KA, Pennesi ME, Sokal I, Church-Kopish J, Schmidt B, Margolis D, Frederick JM, Rieke F, Palczewski K, Wu SM, Detwiler PB, Baehr W (2002) GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice. EMBO J 21:1545–1554CrossRefPubMedGoogle Scholar
  75. 75.
    Makino CL, Peshenko IV, Wen XH, Olshevskaya EV, Barrett R, Dizhoor AM (2008) A role for GCAP2 in regulating the photoresponse. Guanylyl cyclase activation and rod electrophysiology in GUCA1B knock-out mice. J Biol Chem 283:29135–29143CrossRefPubMedGoogle Scholar
  76. 76.
    Pennesi ME, Howes KA, Baehr W, Wu SM (2003) Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice. Proc Natl Acad Sci USA 100:6783–6788CrossRefPubMedGoogle Scholar
  77. 77.
    Payne AM, Downes SM, Bessant DA, Plant C, Moore T, Bird AC, Bhattacharya SS (1999) Genetic analysis of the guanylate cyclase activator 1B (GUCA1B) gene in patients with autosomal dominant retinal dystrophies. J Med Genet 36:691–693PubMedGoogle Scholar
  78. 78.
    Sato M, Nakazawa M, Usui T, Tanimoto N, Abe H, Ohguro H (2005) Mutations in the gene coding for guanylate cyclase-activating protein 2 (GUCA1B gene) in patients with autosomal dominant retinal dystrophies. Graefes Arch Clin Exp Ophthalmol 243:235–242CrossRefPubMedGoogle Scholar
  79. 79.
    Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277CrossRefPubMedGoogle Scholar
  80. 80.
    Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR (2005) Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 112:1442–1447CrossRefPubMedGoogle Scholar
  81. 81.
    Jiang L, Wheaton D, Bereta G, Zhang K, Palczewski K, Birch DG, Baehr W (2008) A novel GCAP1(N104 K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vis Res 48:2425–2432CrossRefPubMedGoogle Scholar
  82. 82.
    Jiang L, Katz BJ, Yang Z, Zhao Y, Faulkner N, Hu J, Baird J, Baehr W, Creel DJ, Zhang K (2004) Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A). Mol Vis 11:143–151Google Scholar
  83. 83.
    Sokal I, Dupps WJ, Grassi MA, Brown J Jr, Affatigato LM, Roychowdhury N, Yang L, Filipek S, Palczewski K, Stone EM, Baehr W (2005) A novel GCAP1 missense mutation (L151F) in a large family with autosomal dominant cone-rod dystrophy (adCORD). Invest Ophthalmol Vis Sci 46:1124–1132CrossRefPubMedGoogle Scholar
  84. 84.
    Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W (2004) A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Invest Ophthalmol Vis Sci 45:3863–3870CrossRefPubMedGoogle Scholar
  85. 85.
    Dizhoor AM, Boikov SG, Olshevskaya EV (1998) Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration. J Biol Chem 273:17311–17314CrossRefPubMedGoogle Scholar
  86. 86.
    Olshevskaya EV, Calvert PD, Woodruff ML, Peshenko IV, Savchenko AB, Makino CL, Ho YS, Fain GL, Dizhoor AM (2004) The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice. J Neurosci 24:6078–6085CrossRefPubMedGoogle Scholar
  87. 87.
    Sokal I, Li N, Surgucheva I, Warren MJ, Payne AM, Bhattacharya SS, Baehr W, Palczewski K (1998) GCAP1 (Y99C) mutant is constitutively active in autosomal dominant cone dystrophy. Mol Cell 2:129–133CrossRefPubMedGoogle Scholar
  88. 88.
    Wilkie SE, Li Y, Deery EC, Newbold RJ, Garibaldi D, Bateman JB, Zhang H, Lin W, Zack DJ, Bhattacharya SS, Warren MJ, Hunt DM, Zhang K (2001) Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy. Am J Hum Genet 69:471–480CrossRefPubMedGoogle Scholar
  89. 89.
    Kitiratschky VB, Behnen P, Kellner U, Heckenlively JR, Zrenner E, Jagle H, Kohl S, Wissinger B, Koch KW (2009) Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. Hum Mutat 30:E782–E796CrossRefPubMedGoogle Scholar
  90. 90.
    Newbold RJ, Deery EC, Walker CE, Wilkie SE, Srinivasan N, Hunt DM, Bhattacharya SS, Warren MJ (2001) The destabilization of human GCAP1 by a proline to leucine mutation might cause cone-rod dystrophy. Hum Mol Genet 10:47–54CrossRefPubMedGoogle Scholar
  91. 91.
    Woodford BJ, Chen J, Simon MI (1994) Expression of rhodopsin promoter transgene product in both rods and cones. Exp Eye Res 58:631–635CrossRefPubMedGoogle Scholar
  92. 92.
    Woodruff ML, Olshevskaya EV, Savchenko AB, Peshenko IV, Barrett R, Bush RA, Sieving PA, Fain GL, Dizhoor AM (2007) Constitutive excitation by Gly90Asp rhodopsin rescues rods from degeneration caused by elevated production of cGMP in the dark. J Neurosci 27:8805–8815CrossRefPubMedGoogle Scholar
  93. 93.
    Buch PK, Cottrill P, Wilkie SE, Pearson RA, Duran Y, West EL, Bhattacharya SS, Dizhoor AM, Ali RR, Hunt DM (2008) A novel ‘knock-in’ mouse model for cone dystrophy: a point mutation in guca1a causes a loss of cone-mediated retinal function and photoreceptor degeneration. ARVO 2008 Presentation no. 4036Google Scholar
  94. 94.
    Van Ghelue M, Eriksen HL, Ponjavic V, Fagerheim T, Andreasson S, Forsman-Semb K, Sandgren O, Holmgren G, Tranebjaerg L (2000) Autosomal dominant cone-rod dystrophy due to a missense mutation (R838C) in the guanylate cyclase 2D gene (GUCY2D) with preserved rod function in one branch of the family. Ophthalmic Genet 21:197–209PubMedGoogle Scholar
  95. 95.
    Weigell-Weber M, Fokstuen S, Torok B, Niemeyer G, Schinzel A, Hergersberg M (2000) Codons 837 and 838 in the retinal guanylate cyclase gene on chromosome 17p: hot spots for mutations in autosomal dominant cone-rod dystrophy? Arch Ophthalmol 118:300PubMedGoogle Scholar
  96. 96.
    Downes SM, Holder GE, Fitzke FW, Payne AM, Warren MJ, Bhattacharya SS, Bird AC (2001) Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch Ophthalmol 119:96–105PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • David M. Hunt
    • 1
  • Prateek Buch
    • 1
  • Michel Michaelides
    • 1
    • 2
  1. 1.UCL Institute of OphthalmologyLondonUK
  2. 2.Moorfields Eye HospitalLondonUK

Personalised recommendations