Molecular and Cellular Biochemistry

, Volume 334, Issue 1–2, pp 67–80 | Cite as

Receptor guanylyl cyclase C (GC-C): regulation and signal transduction

  • Nirmalya Basu
  • Najla Arshad
  • Sandhya S. Visweswariah


Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.


Guanylyl cyclase C Guanylin Uroguanylin Stable toxin peptides cGMP 



The work in the authors’ laboratory has been supported by the Departments of Science and Technology, and Biotechnology, Government of India. NB is a Junior Research Fellow of the Council of Scientific and Industrial Research, and NA is supported by a fellowship from the Indian Institute of Science. We thank all the current and past members of the laboratory for their stimulating discussions and their outstanding enthusiasm in pursuing aspects of GC-C regulation, its ligands and signaling mechanisms.


  1. 1.
    Navaneethan U, Giannella RA (2008) Mechanisms of infectious diarrhea. Nat Clin Pract Gastroenterol Hepatol 5:637–647PubMedGoogle Scholar
  2. 2.
    Okoh AI, Osode AN (2008) Enterotoxigenic Escherichia coli (ETEC): a recurring decimal in infants’ and travelers’ diarrhea. Rev Environ Health 23:135–148PubMedGoogle Scholar
  3. 3.
    Sack DA, Merson MH, Wells JG et al (1975) Diarrhoea associated with heat-stable enterotoxin-producing strains of Escherichia coli. Lancet 2:239–241PubMedGoogle Scholar
  4. 4.
    Hughes JM, Murad F, Chang B et al (1978) Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271:755–756PubMedGoogle Scholar
  5. 5.
    De Jonge HR (1975) The localization of guanylate cyclase in rat small intestinal epithelium. FEBS Lett 53:237–242PubMedGoogle Scholar
  6. 6.
    Field M, Graf LH Jr, Laird WJ et al (1978) Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci USA 75:2800–2804PubMedGoogle Scholar
  7. 7.
    Schulz S, Green CK, Yuen PS et al (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948PubMedGoogle Scholar
  8. 8.
    Currie MG, Fok KF, Kato J et al (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951PubMedGoogle Scholar
  9. 9.
    Hamra FK, Forte LR, Eber SL et al (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci USA 90:10464–10468PubMedGoogle Scholar
  10. 10.
    Schulz S, Lopez MJ, Kuhn M et al (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 100:1590–1595PubMedGoogle Scholar
  11. 11.
    Mann EA, Jump ML, Wu J et al (1997) Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239:463–466PubMedGoogle Scholar
  12. 12.
    Vaandrager AB (2002) Structure and function of the heat-stable enterotoxin receptor/guanylyl cyclase C. Mol Cell Biochem 230:73–83PubMedGoogle Scholar
  13. 13.
    de Jonge HR (1975) Properties of guanylate cyclase and levels of cyclic GMP in rat small intestinal villous and crypt cells. FEBS Lett 55:143–152PubMedGoogle Scholar
  14. 14.
    Swenson ES, Mann EA, Jump ML et al (1996) The guanylin/STa receptor is expressed in crypts and apical epithelium throughout the mouse intestine. Biochem Biophys Res Commun 225:1009–1014PubMedGoogle Scholar
  15. 15.
    Nandi A, Bhandari R, Visweswariah SS (1997) Epitope conservation and immunohistochemical localization of the guanylin/stable toxin peptide receptor, guanylyl cyclase C. J Cell Biochem 66:500–511PubMedGoogle Scholar
  16. 16.
    Buc E, Vartanian MD, Darcha C et al (2005) Guanylyl cyclase C as a reliable immunohistochemical marker and its ligand Escherichia coli heat-stable enterotoxin as a potential protein-delivering vehicle for colorectal cancer cells. Eur J Cancer 41:1618–1627PubMedGoogle Scholar
  17. 17.
    Carrithers SL, Barber MT, Biswas S et al (1996) Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues. Proc Natl Acad Sci USA 93:14827–14832PubMedGoogle Scholar
  18. 18.
    Krause WJ, Freeman RH, Fort LR (1990) Autoradiographic demonstration of specific binding sites for E. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res 260:387–394PubMedGoogle Scholar
  19. 19.
    Forte LR, Krause WJ, Freeman RH (1989) Escherichia coli enterotoxin receptors: localization in opossum kidney, intestine, and testis. Am J Physiol 257:F874–F881PubMedGoogle Scholar
  20. 20.
    Jaleel M, London RM, Eber SL et al (2002) Expression of the receptor guanylyl cyclase C and its ligands in reproductive tissues of the rat: a potential role for a novel signaling pathway in the epididymis. Biol Reprod 67:1975–1980PubMedGoogle Scholar
  21. 21.
    Krause WJ, Cullingford GL, Freeman RH et al (1994) Distribution of heat-stable enterotoxin/guanylin receptors in the intestinal tract of man and other mammals. J Anat 184(Pt 2):407–417PubMedGoogle Scholar
  22. 22.
    Hodson CA, Ambrogi IG, Scott RO et al (2006) Polarized apical sorting of guanylyl cyclase C is specified by a cytosolic signal. Traffic 7:456–464PubMedGoogle Scholar
  23. 23.
    de Sauvage FJ, Horuk R, Bennett G et al (1992) Characterization of the recombinant human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem 267:6479–6482PubMedGoogle Scholar
  24. 24.
    Singh S, Singh G, Heim JM et al (1991) Isolation and expression of a guanylate cyclase-coupled heat stable enterotoxin receptor cDNA from a human colonic cell line. Biochem Biophys Res Commun 179:1455–1463PubMedGoogle Scholar
  25. 25.
    Biswas KH, Shenoy AR, Dutta A, Visweswariah SS (2009) The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions. J Mol Evol 68:587–602PubMedGoogle Scholar
  26. 26.
    Garbers DL, Lowe DG, Dangott LJ et al (1988) The membrane form of guanylate cyclase. Cold Spring Harb Symp Quant Biol 53(Pt 2):993–1003PubMedGoogle Scholar
  27. 27.
    Forte LR Jr (2004) Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol Ther 104:137–162PubMedGoogle Scholar
  28. 28.
    Visweswariah SS, Ramachandran V, Ramamohan S et al (1994) Characterization and partial purification of the human receptor for the heat-stable enterotoxin. Eur J Biochem 219:727–736PubMedGoogle Scholar
  29. 29.
    Hasegawa M, Hidaka Y, Matsumoto Y et al (1999) Determination of the binding site on the extracellular domain of guanylyl cyclase C to heat-stable enterotoxin. J Biol Chem 274:31713–31718PubMedGoogle Scholar
  30. 30.
    Hidaka Y, Matsumoto Y, Shimonishi Y (2002) The micro domain responsible for ligand-binding of guanylyl cyclase C. FEBS Lett 526:58–62PubMedGoogle Scholar
  31. 31.
    Lauber T, Tidten N, Matecko I et al (2009) Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 22:1–7PubMedGoogle Scholar
  32. 32.
    Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A et al (2005) Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 24:315–325PubMedGoogle Scholar
  33. 33.
    van den Akker F, Zhang X, Miyagi M et al (2000) Structure of the dimerized hormone-binding domain of a guanylyl-cyclase-coupled receptor. Nature 406:101–104PubMedGoogle Scholar
  34. 34.
    He X, Chow D, Martick MM et al (2001) Allosteric activation of a spring-loaded natriuretic peptide receptor dimer by hormone. Science 293:1657–1662Google Scholar
  35. 35.
    Vaandrager AB, van der Wiel E, Hom ML et al (1994) Heat-stable enterotoxin receptor/guanylyl cyclase C is an oligomer consisting of functionally distinct subunits, which are non-covalently linked in the intestine. J Biol Chem 269:16409–16415PubMedGoogle Scholar
  36. 36.
    Vaandrager AB, Schulz S, De Jonge HR et al (1993) Guanylyl cyclase C is an N-linked glycoprotein receptor that accounts for multiple heat-stable enterotoxin-binding proteins in the intestine. J Biol Chem 268:2174–2179PubMedGoogle Scholar
  37. 37.
    Ghanekar Y, Chandrashaker A, Tatu U et al (2004) Glycosylation of the receptor guanylate cyclase C: role in ligand binding and catalytic activity. Biochem J 379:653–663PubMedGoogle Scholar
  38. 38.
    Koller KJ, de Sauvage FJ, Lowe DG et al (1992) Conservation of the kinase like regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12:2581–2590PubMedGoogle Scholar
  39. 39.
    Deshmane SP, Parkinson SJ, Crupper SS et al (1997) Cytoplasmic domains mediate the ligand-induced affinity shift of guanylyl cyclase C. Biochemistry 36:12921–12929PubMedGoogle Scholar
  40. 40.
    Rudner XL, Mandal KK, de Sauvage FJ et al (1995) Regulation of cell signaling by the cytoplasmic domains of the heat-stable enterotoxin receptor: identification of autoinhibitory and activating motifs. Proc Natl Acad Sci USA 92:5169–5173PubMedGoogle Scholar
  41. 41.
    Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J 9:576–596PubMedGoogle Scholar
  42. 42.
    Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934PubMedGoogle Scholar
  43. 43.
    Scheeff ED, Eswaran J, Bunkoczi G et al (2009) Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site. Structure 17:128–138PubMedGoogle Scholar
  44. 44.
    Bhandari R, Srinivasan N, Mahaboobi M et al (2001) Functional inactivation of the human guanylyl cyclase C receptor: modeling and mutation of the protein kinase-like domain. Biochemistry 40:9196–9206PubMedGoogle Scholar
  45. 45.
    Kannan N, Taylor SS (2008) Rethinking pseudokinases. Cell 133:204–205PubMedGoogle Scholar
  46. 46.
    Mukherjee K, Sharma M, Urlaub H et al (2008) CASK functions as a Mg2+-independent neurexin kinase. Cell 133:328–339PubMedGoogle Scholar
  47. 47.
    Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34:4696–4701PubMedGoogle Scholar
  48. 48.
    Thompson DK, Garbers DL (1995) Dominant negative mutations of the guanylyl cyclase-A receptor. Extracellular domain deletion and catalytic domain point mutations. J Biol Chem 270:425–430PubMedGoogle Scholar
  49. 49.
    Ramamurthy V, Tucker C, Wilkie SE et al (2001) Interactions within the coiled-coil domain of RetGC-1 guanylyl cyclase are optimized for regulation rather than for high affinity. J Biol Chem 276:26218–26229PubMedGoogle Scholar
  50. 50.
    Anantharaman V, Balaji S, Aravind L (2006) The signaling helix: a common functional theme in diverse signaling proteins. Biol Direct 1:25PubMedGoogle Scholar
  51. 51.
    Saha S, Biswas KH, Kondapalli C et al (2009) The linker region in receptor guanylyl cyclases is a key regulatory module: mutational analysis of guanylyl cyclase C. J Biol Chem 284:27135–27145PubMedGoogle Scholar
  52. 52.
    Krupinski J, Coussen F, Bakalyar HA et al (1989) Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244:1558–1564PubMedGoogle Scholar
  53. 53.
    Zhang G, Liu Y, Ruoho AE et al (1997) Structure of the adenylyl cyclase catalytic core. Nature 386:247–253PubMedGoogle Scholar
  54. 54.
    Rauch A, Leipelt M, Russwurm M et al (2008) Crystal structure of the guanylyl cyclase Cya2. Proc Natl Acad Sci USA 105:15720–15725PubMedGoogle Scholar
  55. 55.
    Winger JA, Derbyshire ER, Lamers MH et al (2008) The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol 8:42PubMedGoogle Scholar
  56. 56.
    Artymiuk PJ, Poirrette AR, Rice DW et al (1997) A polymerase I palm in adenylyl cyclase? Nature 388:33–34PubMedGoogle Scholar
  57. 57.
    Tesmer JJ, Sprang SR (1998) The structure, catalytic mechanism and regulation of adenylyl cyclase. Curr Opin Struct Biol 8:713–719PubMedGoogle Scholar
  58. 58.
    Garbers DL (1979) Purification of soluble guanylate cyclase from rat lung. J Biol Chem 254:240–243PubMedGoogle Scholar
  59. 59.
    Parkinson SJ, Carrithers SL, Waldman SA (1994) Opposing adenine nucleotide-dependent pathways regulate guanylyl cyclase C in rat intestine. J Biol Chem 269:22683–22690PubMedGoogle Scholar
  60. 60.
    Bakre MM, Ghanekar Y, Visweswariah SS (2000) Homologous desensitization of the human guanylate cyclase C receptor. Cell-specific regulation of catalytic activity. Eur J Biochem 267:179–187PubMedGoogle Scholar
  61. 61.
    Garbers DL, Chrisman TD, Wiegn P et al (2006) Membrane guanylyl cyclase receptors: an update. Trends Endocrinol Metab 17:251–258PubMedGoogle Scholar
  62. 62.
    Hakki S, Crane M, Hugues M et al (1993) Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes. Int J Biochem 25:557–566PubMedGoogle Scholar
  63. 63.
    Scott RO, Thelin WR, Milgram SL (2002) A novel PDZ protein regulates the activity of guanylyl cyclase C, the heat-stable enterotoxin receptor. J Biol Chem 277:22934–22941PubMedGoogle Scholar
  64. 64.
    Shimonishi Y, Hidaka Y, Koizumi M et al (1987) Mode of disulfide bond formation of a heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett 215:165–170PubMedGoogle Scholar
  65. 65.
    Gariepy J, Judd AK, Schoolnik GK (1987) Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin ST1b. Proc Natl Acad Sci USA 84:8907–8911PubMedGoogle Scholar
  66. 66.
    Smith HW, Halls S (1967) Studies on Escherichia coli enterotoxin. J Pathol Bacteriol 93:531–543PubMedGoogle Scholar
  67. 67.
    Sato T, Ozaki H, Hata Y et al (1994) Structural characteristics for biological activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli: X-ray crystallography of weakly toxic and nontoxic analogs. Biochemistry 33:8641–8650PubMedGoogle Scholar
  68. 68.
    Tian X, Michal AM, Li P et al (2008) STa peptide analogs for probing guanylyl cyclase C. Biopolymers 90:713–723PubMedGoogle Scholar
  69. 69.
    Fan X, Hamra FK, London RM et al (1997) Structure and activity of uroguanylin and guanylin from the intestine and urine of rats. Am J Physiol 273:E957–E964PubMedGoogle Scholar
  70. 70.
    Hamra FK, Krause WJ, Eber SL et al (1996) Opossum colonic mucosa contains uroguanylin and guanylin peptides. Am J Physiol 270:G708–G716PubMedGoogle Scholar
  71. 71.
    Hamra FK, Fan X, Krause WJ et al (1996) Prouroguanylin and proguanylin: purification from colon, structure, and modulation of bioactivity by proteases. Endocrinology 137:257–265PubMedGoogle Scholar
  72. 72.
    de Sauvage FJ, Keshav S, Kuang WJ et al (1992) Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci USA 89:9089–9093PubMedGoogle Scholar
  73. 73.
    Forte LR, Eber SL, Turner JT et al (1993) Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate. J Clin Invest 91:2423–2428PubMedGoogle Scholar
  74. 74.
    Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512PubMedGoogle Scholar
  75. 75.
    Duda T, Sharma RK (2009) Ca2+-modulated ONE-GC odorant signal transduction. FEBS Lett 583:1327–1330PubMedGoogle Scholar
  76. 76.
    Cockerham RE, Leinders-Zufall T, Munger SD et al (2009) Functional analysis of the guanylyl cyclase type D signaling system in the olfactory epithelium. Ann N Y Acad Sci 1170:173–176PubMedGoogle Scholar
  77. 77.
    Joo NS, London RM, Kim HD et al (1998) Regulation of intestinal Cl- and HCO3-secretion by uroguanylin. Am J Physiol 274:G633–G644PubMedGoogle Scholar
  78. 78.
    Hamra FK, Eber SL, Chin DT et al (1997) Regulation of intestinal uroguanylin/guanylin receptor-mediated responses by mucosal acidity. Proc Natl Acad Sci USA 94:2705–2710PubMedGoogle Scholar
  79. 79.
    Lucas ML, Schneider W, Haberich FJ et al (1975) Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc R Soc Lond B Biol Sci 192:39–48PubMedGoogle Scholar
  80. 80.
    Forte LR, Eber SL, Fan X et al (1999) Lymphoguanylin: cloning and characterization of a unique member of the guanylin peptide family. Endocrinology 140:1800–1806PubMedGoogle Scholar
  81. 81.
    London RM, Eber SL, Visweswariah SS et al (1999) Structure and activity of OK-GC: a kidney receptor guanylate cyclase activated by guanylin peptides. Am J Physiol 276:F882–F891PubMedGoogle Scholar
  82. 82.
    Mann EA, Swenson ES, Copeland NG et al (1996) Localization of the guanylyl cyclase C gene to mouse chromosome 6 and human chromosome 12p12. Genomics 34:265–267PubMedGoogle Scholar
  83. 83.
    Pearlman JM, Prawer SP, Barber MT et al (2000) A splice variant of the transcript for guanylyl cyclase C is expressed in human colon and colorectal cancer cells. Dig Dis Sci 45:298–305PubMedGoogle Scholar
  84. 84.
    Mann EA, Jump ML, Glenella RA (1996) Cell line-specific transcriptional activation of the promoter of the human guanylyl cyclase C/heat-stable enterotoxin/receptor gene. Biochim Biophys Acta 1305:7–10PubMedGoogle Scholar
  85. 85.
    Park J, Schulz S, Waldman SA (2000) Intestine-specific activity of the human guanylyl cyclase C promoter is regulated by Cdx2. Gastroenterology 119:89–96PubMedGoogle Scholar
  86. 86.
    Swenson ES, Mann EA, Jump ML et al (1999) Hepatocyte nuclear factor-4 regulates intestinal expression of the guanylin/heat-stable toxin receptor. Am J Physiol 276:G728–G736PubMedGoogle Scholar
  87. 87.
    Roy N, Guruprasad MR, Kondaiah P et al (2001) Protein kinase C regulates transcription of the human guanylate cyclase C gene. Eur J Biochem 268:2160–2171PubMedGoogle Scholar
  88. 88.
    Nehra D, Howell P, Williams CP et al (1999) Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44:598–602PubMedCrossRefGoogle Scholar
  89. 89.
    Vaezi MF, Richter JE (1996) Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111:1192–1199PubMedGoogle Scholar
  90. 90.
    Silberg DG, Sullivan J, Kang E et al (2002) Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122:689–696PubMedGoogle Scholar
  91. 91.
    Debruyne PR, Witek M, Gong L et al (2006) Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology 130:1191–1206PubMedGoogle Scholar
  92. 92.
    Potter LR, Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18:2164–2172PubMedGoogle Scholar
  93. 93.
    Potthast R, Potter LR (2005) Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptors. Peptides 26:1001–1008PubMedGoogle Scholar
  94. 94.
    Crane JK, Shanks KL (1996) Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C. Mol Cell Biochem 165:111–120PubMedGoogle Scholar
  95. 95.
    Wada A, Hasegawa M, Matsumoto K et al (1996) The significance of Ser1029 of the heat-stable enterotoxin receptor (STaR): relation of STa-mediated guanylyl cyclase activation and signaling by phorbol myristate acetate. FEBS Lett 384:75–77PubMedGoogle Scholar
  96. 96.
    Bhandari R, Mathew R, Vijayachandra K et al (2000) Tyrosine phosphorylation of the human guanylyl cyclase C receptor. J Biosci 25:339–346PubMedGoogle Scholar
  97. 97.
    Basu N, Bhandari R, Natarajan VT et al (2009) Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Mol Cell Biol 29:5277–5289PubMedGoogle Scholar
  98. 98.
    Hasegawa M, Hidaka Y, Wada A et al (1999) The relevance of N-linked glycosylation to the binding of a ligand to guanylate cyclase C. Eur J Biochem 263:338–346PubMedGoogle Scholar
  99. 99.
    Nandi A, Mathew R, Visweswariah SS (1996) Expression of the extracellular domain of the human heat-stable enterotoxin receptor in Escherichia coli and generation of neutralizing antibodies. Protein Expr Purif 8:151–159PubMedGoogle Scholar
  100. 100.
    Potter LR, Garbers DL (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem 267:14531–14534PubMedGoogle Scholar
  101. 101.
    Ghanekar Y, Chandrashaker A, Visweswariah SS (2003) Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C. Eur J Biochem 270:3848–3857PubMedGoogle Scholar
  102. 102.
    Bakre MM, Visweswariah SS (1997) Dual regulation of heat-stable enterotoxin-mediated cGMP accumulation in T84 cells by receptor desensitization and increased phosphodiesterase activity. FEBS Lett 408:345–349PubMedGoogle Scholar
  103. 103.
    Bakre MM, Sopory S, Visweswariah SS (2000) Expression and regulation of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) in human colonic epithelial cells: role in the induction of cellular refractoriness to the heat-stable enterotoxin peptide. J Cell Biochem 77:159–167PubMedGoogle Scholar
  104. 104.
    Gazzano H, Wu HI, Waldman SA (1991) Activation of particulate guanylate cyclase by Escherichia coli heat-stable enterotoxin is regulated by adenine nucleotides. Infect Immun 59:1552–1557PubMedGoogle Scholar
  105. 105.
    Katwa LC, Parker CD, Dybing JK et al (1992) Nucleotide regulation of heat-stable enterotoxin receptor binding and of guanylate cyclase activation. Biochem J 283(Pt 3):727–735PubMedGoogle Scholar
  106. 106.
    Vaandrager AB, van der Wiel E, de Jonge HR (1993) Heat-stable enterotoxin activation of immunopurified guanylyl cyclase C. Modulation by adenine nucleotides. J Biol Chem 268:19598–19603PubMedGoogle Scholar
  107. 107.
    Bhandari R, Suguna K, Visweswariah SS (1999) Guanylyl cyclase C receptor: regulation of catalytic activity by ATP. Biosci Rep 19:179–188PubMedGoogle Scholar
  108. 108.
    Vijayachandra K, Guruprasad M, Bhandari R et al (2000) Biochemical characterization of the intracellular domain of the human guanylyl cyclase C receptor provides evidence for a catalytically active homotrimer. Biochemistry 39:16075–16083PubMedGoogle Scholar
  109. 109.
    Jaleel M, Saha S, Shenoy AR et al (2006) The kinase homology domain of receptor guanylyl cyclase C: ATP binding and identification of an adenine nucleotide sensitive site. Biochemistry 45:1888–1898PubMedGoogle Scholar
  110. 110.
    Parkinson SJ, Alekseev AE, Gomez LA et al (1997) Interruption of Escherichia coli heat-stable enterotoxin-induced guanylyl cyclase signaling and associated chloride current in human intestinal cells by 2-chloroadenosine. J Biol Chem 272:754–758PubMedGoogle Scholar
  111. 111.
    Parkinson SJ, Waldman SA (1996) An intracellular adenine nucleotide binding site inhibits guanyly cyclase C by a guanine nucleotide-dependent mechanism. Biochemistry 35:3213–3221PubMedGoogle Scholar
  112. 112.
    Jaleel M, Shenoy AR, Visweswariah SS (2004) Tyrphostins are inhibitors of guanylyl and adenylyl cyclases. Biochemistry 43:8247–8255PubMedGoogle Scholar
  113. 113.
    Kots AY, Choi BK, Estrella-Jimenez ME et al (2008) Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: Application for treatment of diarrhea. Proc Natl Acad Sci USA 105:8440–8445PubMedGoogle Scholar
  114. 114.
    Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  115. 115.
    Munzel T, Feil R, Mulsch A et al (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′, 5′-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 108:2172–2183PubMedGoogle Scholar
  116. 116.
    Rybalkin SD, Yan C, Bornfeldt KE et al (2003) Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res 93:280–291PubMedGoogle Scholar
  117. 117.
    Forte LR (1999) Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and pathobiology. Regul Pept 81:25–39PubMedGoogle Scholar
  118. 118.
    Vaandrager AB, De Jonge HR (1994) Effect of cyclic GMP on intestinal transport. Adv Pharmacol 26:253–283PubMedGoogle Scholar
  119. 119.
    Schultheis PJ, Clarke LL, Meneton P et al (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19:282–285PubMedGoogle Scholar
  120. 120.
    Vaandrager AB, Bot AG, De Jonge HR (1997) Guanosine 3′, 5′-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology 112:437–443PubMedGoogle Scholar
  121. 121.
    Vaandrager AB, Bot AG, Ruth P et al (2000) Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 118:108–114PubMedGoogle Scholar
  122. 122.
    Trezise AE, Buchwald M (1991) In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature 353:434–437PubMedGoogle Scholar
  123. 123.
    Higgins CF (2001) ABC transporters: physiology, structure and mechanism–an overview. Res Microbiol 152:205–210PubMedGoogle Scholar
  124. 124.
    Ostedgaard LS, Baldursson O, Welsh MJ (2001) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by its R domain. J Biol Chem 276:7689–7692PubMedGoogle Scholar
  125. 125.
    Vaandrager AB, Tilly BC, Smolenski A et al (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta. J Biol Chem 272:4195–4200PubMedGoogle Scholar
  126. 126.
    Vaandrager AB, Smolenski A, Tilly BC et al (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci USA 95:1466–1471PubMedGoogle Scholar
  127. 127.
    Hayashi M, Kita K, Ohashi Y et al (2007) Phosphodiesterase isozymes involved in regulation of HCO3-secretion in isolated mouse duodenum in vitro. Biochem Pharmacol 74:1507–1513PubMedGoogle Scholar
  128. 128.
    O’Grady SM, Jiang X, Maniak PJ et al (2002) Cyclic AMP-dependent Cl secretion is regulated by multiple phosphodiesterase subtypes in human colonic epithelial cells. J Membr Biol 185:137–144PubMedGoogle Scholar
  129. 129.
    Forte LR, Thorne PK, Eber SL et al (1992) Stimulation of intestinal Cl- transport by heat-stable enterotoxin: activation of cAMP-dependent protein kinase by cGMP. Am J Physiol 263:C607–C615PubMedGoogle Scholar
  130. 130.
    Selvaraj NG, Prasad R, Goldstein JL et al (2000) Evidence for the presence of cGMP-dependent protein kinase-II in human distal colon and in T84, the colonic cell line. Biochim Biophys Acta 1498:32–43PubMedGoogle Scholar
  131. 131.
    Tousson A, Fuller CM, Benos DJ (1996) Apical recruitment of CFTR in T84 cells is dependent on cAMP and microtubules but not Ca2+ or microfilaments. J Cell Sci 109(Pt 6):1325–1334PubMedGoogle Scholar
  132. 132.
    Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289:C708–C716PubMedGoogle Scholar
  133. 133.
    Lucas ML (2001) A reconsideration of the evidence for Escherichia coli STa (heat stable) enterotoxin-driven fluid secretion: a new view of STa action and a new paradigm for fluid absorption. J Appl Microbiol 90:7–26PubMedGoogle Scholar
  134. 134.
    Smolenski A, Schultess J, Danielewski O et al (2004) Quantitative analysis of the cardiac fibroblast transcriptome-implications for NO/cGMP signaling. Genomics 83:577–587PubMedGoogle Scholar
  135. 135.
    Sawada N, Itoh H, Miyashita K et al (2009) cGMP kinase and RhoA Ser188 phosphorylation integrate pro- and anti-fibrotic signals in blood vessels. Mol Cell Biol 29:6018–6032PubMedGoogle Scholar
  136. 136.
    Hofmann F, Bernhard D, Lukowski R et al (2009) cGMP regulated protein kinases (cGK). Handb Exp Pharmacol 191:137–162PubMedGoogle Scholar
  137. 137.
    Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020PubMedGoogle Scholar
  138. 138.
    Eastwood GL (1995) A review of gastrointestinal epithelial renewal and its relevance to the development of adenocarcinomas of the gastrointestinal tract. J Clin Gastroenterol 21(Suppl 1):S1–S11PubMedGoogle Scholar
  139. 139.
    Shailubhai K, Yu HH, Karunanandaa K et al (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP. Cancer Res 60:5151–5157PubMedGoogle Scholar
  140. 140.
    Cohen MB, Hawkins JA, Witte DP (1998) Guanylin mRNA expression in human intestine and colorectal adenocarcinoma. Lab Invest 78:101–108PubMedGoogle Scholar
  141. 141.
    Thompson WJ, Piazza GA, Li H et al (2000) Exisulind induction of apoptosis involves guanosine 3′, 5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated beta-catenin. Cancer Res 60:3338–3342PubMedGoogle Scholar
  142. 142.
    Pitari GM, Di Guglielmo MD, Park J et al (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA 98:7846–7851PubMedGoogle Scholar
  143. 143.
    Pitari GM, Zingman LV, Hodgson DM et al (2003) Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci USA 100:2695–2699PubMedGoogle Scholar
  144. 144.
    Pitari GM, Lin JE, Shah FJ et al (2008) Enterotoxin preconditioning restores calcium-sensing receptor-mediated cytostasis in colon cancer cells. Carcinogenesis 29:1601–1607PubMedGoogle Scholar
  145. 145.
    Pitari GM, Baksh RI, Harris DM et al (2005) Interruption of homologous desensitization in cyclic guanosine 3′, 5′-monophosphate signaling restores colon cancer cytostasis by bacterial enterotoxins. Cancer Res 65:11129–11135PubMedGoogle Scholar
  146. 146.
    Crane MR, Hugues M, O’Hanley PD et al (1992) Identification of two affinity states of low affinity receptors for Escherichia coli heat-stable enterotoxin: correlation of occupation of lower affinity state with guanylate cyclase activation. Mol Pharmacol 41:1073–1080PubMedGoogle Scholar
  147. 147.
    Hakki S, Robertson DC, Waldman SA (1993) A 56 kDa binding protein for Escherichia coli heat-stable enterotoxin isolated from the cytoskeleton of rat intestinal membrane does not possess guanylate cyclase activity. Biochim Biophys Acta 1152:1–8PubMedGoogle Scholar
  148. 148.
    Mann EA, Cohen MB, Giannella RA (1993) Comparison of receptors for Escherichia coli heat-stable enterotoxin: novel receptor present in IEC-6 cells. Am J Physiol 264:G172–G178PubMedGoogle Scholar
  149. 149.
    Carey RM, Smith JR, Ortt EM (1976) Gastrointestinal control of sodium excretion in sodium-depleted conscious rabbits. Am J Physiol 230:1504–1508PubMedGoogle Scholar
  150. 150.
    Mu JY, Hansson GC, Bergstrom G et al (1995) Renal sodium excretion after oral or intravenous sodium loading in sodium-deprived normotensive and spontaneously hypertensive rats. Acta Physiol Scand 153:169–177PubMedGoogle Scholar
  151. 151.
    Carrithers SL, Ott CE, Hill MJ et al (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor. Kidney Int 65:40–53PubMedGoogle Scholar
  152. 152.
    Carrithers SL, Hill MJ, Johnson BR et al (1999) Renal effects of uroguanylin and guanylin in vivo. Braz J Med Biol Res 32:1337–1344PubMedGoogle Scholar
  153. 153.
    Steinbrecher KA, Wowk SA, Rudolph JA et al (2002) Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am J Pathol 161:2169–2178PubMedGoogle Scholar
  154. 154.
    Pitari GM, Li P, Lin JE et al (2007) The paracrine hormone hypothesis of colorectal cancer. Clin Pharmacol Ther 82:441–447PubMedGoogle Scholar
  155. 155.
    Li P, Lin JE, Chervoneva I et al (2007) Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. Am J Pathol 171:1847–1858PubMedGoogle Scholar
  156. 156.
    Li P, Schulz S, Bombonati A et al (2007) Guanylyl cyclase C suppresses intestinal tumorigenesis by restricting proliferation and maintaining genomic integrity. Gastroenterology 133:599–607PubMedGoogle Scholar
  157. 157.
    Mann EA, Steinbrecher KA, Stroup C et al (2005) Lack of guanylyl cyclase C, the receptor for Escherichia coli heat-stable enterotoxin, results in reduced polyp formation and increased apoptosis in the multiple intestinal neoplasia (Min) mouse model. Int J Cancer 116:500–505PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Nirmalya Basu
    • 1
  • Najla Arshad
    • 1
  • Sandhya S. Visweswariah
    • 1
  1. 1.Department of Molecular Reproduction, Development and GeneticsIndian Institute of ScienceBangaloreIndia

Personalised recommendations