Molecular and Cellular Biochemistry

, Volume 335, Issue 1–2, pp 223–234 | Cite as

Blood gene expression markers to detect and distinguish target organ toxicity

  • Christina Umbright
  • Rajendran Sellamuthu
  • Shengqiao Li
  • Michael Kashon
  • Michael Luster
  • Pius JosephEmail author


The purpose of this study was to investigate whether the expression of specific genes in peripheral blood can be used as surrogate marker(s) to detect and distinguish target organ toxicity induced by chemicals in rats. Rats were intraperitoneally administered a single, acute dose of a well-established hepatotoxic (acetaminophen) or a neurotoxic (methyl parathion) chemical. Administration of acetaminophen (AP) in the rats resulted in hepatotoxicity as evidenced from elevated blood transaminase activities. Similarly, administration of methyl parathion (MP) resulted in neurotoxicity in the rats as evidenced from the inhibition of acetyl cholinesterase activity in their blood. Administration of either chemical also resulted in mild hematotoxicity in the rats. Microarray analysis of the global gene expression profile of rat blood identified distinct gene expression markers capable of detecting and distinguishing hepatotoxicity and neurotoxicity induced by AP and MP, respectively. Differential expressions of the marker genes for hepatotoxicity and neurotoxicity were detectable in the blood earlier than the appearance of the commonly used clinical markers (serum transaminases and acetyl cholinesterase). The ability of the marker genes to detect hepatotoxicity and neurotoxicity was further confirmed using the blood samples of rats administered additional hepatotoxic (thioacetamide, dimethylnitrobenzene, and carbon tetrachloride) or neurotoxic (ethyl parathion and malathion) chemicals. In summary, our results demonstrated that blood gene expression markers can detect and distinguish target organ toxicity non-invasively.


Blood gene expression Hepatotoxicity Neurotoxicity Toxicity markers 



The authors gratefully acknowledge the valuable help provided by Dr. Krishnan Sriram and Christopher Felton during euthanasia of the rats and blood collection. The critical review of the manuscript by Dr. Victor Johnson is also gratefully acknowledged.

Supplementary material

11010_2009_272_MOESM1_ESM.doc (24 kb)
(DOC 24 kb)
11010_2009_272_MOESM10_ESM.doc (42 kb)
(DOC 42 kb)
11010_2009_272_MOESM11_ESM.doc (76 kb)
(DOC 76 kb)
11010_2009_272_MOESM12_ESM.doc (36 kb)
(DOC 35 kb)
11010_2009_272_MOESM2_ESM.doc (24 kb)
(DOC 24 kb)
11010_2009_272_MOESM3_ESM.doc (72 kb)
(DOC 72 kb)
11010_2009_272_MOESM4_ESM.doc (152 kb)
(DOC 151 kb)
11010_2009_272_MOESM5_ESM.doc (132 kb)
(DOC 131 kb)
11010_2009_272_MOESM6_ESM.doc (48 kb)
(DOC 47 kb)
11010_2009_272_MOESM7_ESM.doc (92 kb)
(DOC 92 kb)
11010_2009_272_MOESM8_ESM.doc (82 kb)
(DOC 81 kb)
11010_2009_272_MOESM9_ESM.doc (94 kb)
(DOC 94 kb)


  1. 1.
    Smith MA, Smith JH, Litterst CL, Copley MP, Uozumi J, Boyd MR (1988) In vivo biochemical indices of nephrotoxicity of platinum analogs tetraplatin, CHIP, and cisplatin in the Fischer 344 rat. Fundam Appl Toxicol 10:62–72CrossRefPubMedGoogle Scholar
  2. 2.
    Botta D, Shi S, White CC, Dabrowski MJ, Keener CL, Srinouanprachanh SL, Farin FM, Ware CB, Ladiges WC, Pierce RH, Fausto N, Kavanagh TJ (2006) Acetaminophen-induced liver injury is attenuated in male glutamate-cysteine ligase transgenic mice. J Biol Chem 281:28865–28875CrossRefPubMedGoogle Scholar
  3. 3.
    Irwin RD, Boorman GA, Cunningham ML, Heinloth AN, Malarkey DE, Paules RS (2004) Application of toxicogenomics to toxicology: basic concepts in the analysis of microarray data. Toxicol Pathol 32(1):72–83CrossRefPubMedGoogle Scholar
  4. 4.
    Mendrick DL (2008) Genomic and genetic biomarkers of toxicity. Toxicology 245:175–181PubMedGoogle Scholar
  5. 5.
    Heinloth AN, Irwin RD, Boorman GA, Nettesheim P, Fannin RD, Sieber SO, Snell ML, Tucker CJ, Li L, Travlos GS, Vansant G, Blackshear PE, Tennant RW, Cunningham ML, Paules RS (2004) Gene expression profiling of rat livers reveals indicators of potential adverse effects. Toxicol Sci 80:193–202CrossRefPubMedGoogle Scholar
  6. 6.
    Konig R, Cai P, Guo X, Ansari GA (2008) Transcriptomic analysis reveals early signs of liver toxicity in female MRL +/+ mice exposed to the acylating chemicals dichloroacetyl chloride and dichloroacetic anhydride. Chem Res Toxicol 21:572–582CrossRefPubMedGoogle Scholar
  7. 7.
    Buck WR, Waring JF, Blomme EA (2008) Use of traditional end points and gene dysregulation to understand mechanisms of toxicity: toxicogenomics in mechanistic toxicology. Methods Mol Biol 460:23–44PubMedGoogle Scholar
  8. 8.
    Beyer RP, Fry RC, Lasarev MR, McConnachie LA, Meira LB, Palmer VS, Powell CL, Ross PK, Bammler TK, Bradford BU, Cranson AB, Cunningham ML, Fannin RD, Higgins GM, Hurban P, Kayton RJ, Kerr KF, Kosyk O, Lobenhofer EK, Sieber SO, Vliet PA, Weis BK, Wolfinger R, Woods CG, Freedman JH, Linney E, Kaufmann WK, Kavanagh TJ, Paules RS, Rusyn I, Samson LD, Spencer PS, Suk W, Tennant RJ, Zarbl H (2007) Multicenter study of acetaminophen hepatotoxicity reveals the importance of biological endpoints in genomic analyses. Toxicol Sci 99:326–337CrossRefPubMedGoogle Scholar
  9. 9.
    Amin RP, Vickers AE, Sistare F, Thompson KL, Roman RJ, Lawton M, Kramer J, Hamadeh HK, Collins J, Grissom S, Bennett L, Tucker CJ, Wild S, Kind C, Oreffo V, Davis JW 2nd, Curtiss S, Naciff JM, Cunningham M, Tennant R, Stevens J, Car B, Bertram TA, Afshari CA (2004) Identification of putative gene based markers of renal toxicity. Environ Health Perspect 112:465–479PubMedGoogle Scholar
  10. 10.
    Waring JF, Ciurlionis R, Jolly RA, Heindel M, Ulrich RG (2001) Microarray analysis of hepatotoxins in vitro reveals a correlation between gene expression profiles and mechanisms of toxicity. Toxicol Lett 120:359–368CrossRefPubMedGoogle Scholar
  11. 11.
    Kishta O, Adeeko A, Li D, Luu T, Brawer JR, Morales C, Hermo L, Robaire B, Hales BF, Barthelemy J, Cyr DG, Trasler JM (2007) In utero exposure to tributyltin chloride differentially alters male and female fetal gonad morphology and gene expression profiles in the Sprague-Dawley rat. Reprod Toxicol 23:1–11CrossRefPubMedGoogle Scholar
  12. 12.
    Burczynski ME, Rocket JC (2006) Introduction to surrogate tissue analysis. In: Burczynski ME, Rocket JC (eds) Surrogate tissue analysis. CRC, Boca Raton, FL, pp 3–11Google Scholar
  13. 13.
    Rocket JC (2006) Blood-derived transcriptomic profiles as a means to monitor levels of toxicant exposure and the effects of toxicants on inaccessible target tissues. In: Burczynski ME, Rocket JC (eds) Surrogate tissue analysis, CRC, Boca Raton, FL, pp 65–76Google Scholar
  14. 14.
    Bushel PR, Heinloth AN, Li J, Huang L, Chou JW, Boorman GA, Malarkey DE, Houle CD, Ward SM, Wilson RE, Fannin RD, Russo MW, Watkins PB, Tennant RW, Paules RS (2007) Blood gene expression signatures predict exposure levels. Proc Natl Acad Sci USA 104:18211–18216CrossRefPubMedGoogle Scholar
  15. 15.
    Lobenhofer EK, Auman JT, Blackshear PE, Boorman GA, Bushel PR, Cunningham ML, Fostel JM, Gerrish K, Heinloth AN, Irwin RD, Malarkey DE, Merrick BA, Sieber SO, Tucker CJ, Ward SM, Wilson RE, Hurban P, Tennant RW, Paules RS (2008) Gene expression response in target organ and whole blood varies as a function of target organ injury phenotype. Genome Biol 9:R100CrossRefPubMedGoogle Scholar
  16. 16.
    Karanth S, Liu J, Ray A, Pope C (2007) Comparative in vivo effects of parathion on striatal acetylcholine accumulation in adult and aged rats. Toxicology 239:167–179CrossRefPubMedGoogle Scholar
  17. 17.
    McHale CM, Zhang L, Hubbard AE, Zhao X, Baccarelli A, Pesatori AC, Smith MT, Landi MT (2007) Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects. Toxicology 229:101–113CrossRefPubMedGoogle Scholar
  18. 18.
    Minami K, Saito T, Narahara M, Tomita H, Kato H, Sugiyama H, Katoh M, Nakajima M, Yokoi T (2005) Relationship between hepatic gene expression profiles and hepatotoxicity in five typical hepatotoxicant-administered rats. Toxicol Sci 87:296–305CrossRefPubMedGoogle Scholar
  19. 19.
    Kon K, Ikejima K, Okumura K, Aoyama T, Arai K, Takei Y, Lemasters JJ, Sato N (2007) Role of apoptosis in acetaminophen hepatotoxicity. J Gastroenterol Hepatol 22(Suppl 1):S49–S52CrossRefPubMedGoogle Scholar
  20. 20.
    Jaeschke H (2005) Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 1:389–397CrossRefPubMedGoogle Scholar
  21. 21.
    Ueno K, Yamaura K, Nakamura T, Satoh T, Yano S (2000) Acetaminophen-induced immunosuppression associated with hepatotoxicity in mice. Res Commun Mol Pathol Pharmacol 108:237–251PubMedGoogle Scholar
  22. 22.
    Menike D, Wickramasinghe SN (1998) Effects of four species of interferon-alpha on cultured erythroid progenitors from congenital dyserythropoietic anaemia type I. Br J Haematol 103:825–830CrossRefPubMedGoogle Scholar
  23. 23.
    Karanth S, Liu J, Olivier K Jr, Pope C (2004) Interactive toxicity of the organophosphorus insecticides chlorpyrifos and methyl parathion in adult rats. Toxicol Appl Pharmacol 196:183–190CrossRefPubMedGoogle Scholar
  24. 24.
    Huang L, Heinloth AN, Zeng ZB, Paules RS, Bushel PR (2008) Genes related to apoptosis predict necrosis of the liver as a phenotype observed in rats exposed to a compendium of hepatotoxicants. BMC Genomics 9:288Google Scholar
  25. 25.
    Powell CL, Kosyk O, Ross PK, Schoonhoven R, Boysen G, Swenberg JA, Heinloth AN, Boorman GA, Cunningham ML, Paules RS, Rusyn I (2006) Phenotypic anchoring of acetaminophen-induced oxidative stress with gene expression profiles in rat liver. Toxicol Sci 93:213–222CrossRefPubMedGoogle Scholar
  26. 26.
    Fukushima T, Kikkawa R, Hamada Y, Horii I (2006) Genomic cluster and network analysis for predictive screening for hepatotoxicity. J Toxicol Sci 31:419–432CrossRefPubMedGoogle Scholar
  27. 27.
    Reilly TP, Bourdi M, Brady JN, Pise-Masison CA, Radonovich MF, George JW, Pohl LR (2001) Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Biochem Biophys Res Commun 282:321–328CrossRefPubMedGoogle Scholar
  28. 28.
    Moore M, Thor H, Moore G, Nelson S, Moldeus P, Orrenius S (1985) The toxicity of acetaminophen and N-acetyl-p-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J Biol Chem 260:13035–13040PubMedGoogle Scholar
  29. 29.
    Kim YC, Lee SJ (1998) Temporal variation in hepatotoxicity and metabolism of acetaminophen in mice. Toxicology 128:53–61CrossRefPubMedGoogle Scholar
  30. 30.
    Neff SB, Neff TA, Kunkel SL, Hogaboam CM (2003) Alterations in cytokine/chemokine expression during organ-to-organ communication established via acetaminophen-induced toxicity. Exp Mol Pathol 75:187–193CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Z, Neuburg D, Li C, Su L, Kim JY, Chen JC, Christiani DC (2005) Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Environ Health Perspect 113:233–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Christina Umbright
    • 1
  • Rajendran Sellamuthu
    • 1
  • Shengqiao Li
    • 2
  • Michael Kashon
    • 2
  • Michael Luster
    • 1
  • Pius Joseph
    • 1
    • 3
    Email author
  1. 1.Toxicology and Molecular Biology BranchNational Institute for Occupational Safety and HealthMorgantownUSA
  2. 2.Biostatistics and Epidemiology Branch, Health Effects Laboratory DivisionNational Institute for Occupational Safety and HealthMorgantownUSA
  3. 3.MS 3014, Molecular Carcinogenesis LaboratoryNational Institute for Occupational Safety and Health (NIOSH)MorgantownUSA

Personalised recommendations