Acetyl-coenzyme A synthetase 2 is a nuclear protein required for replicative longevity in Saccharomyces cerevisiae

  • Alaric A. Falcón
  • Shaoping Chen
  • Michael S. Wood
  • John P. Aris
Article

Abstract

Acs2p is one of two acetyl-coenzyme A synthetases in Saccharomyces cerevisiae. We have prepared and characterized a monoclonal antibody specific for Acs2p and find that Acs2p is localized primarily to the nucleus, including the nucleolus, with a minor amount in the cytosol. We find that Acs2p is required for replicative longevity: an acs2∆ strain has a reduced replicative life span compared to wild-type and acs1∆ strains. Furthermore, replicatively aged acs2∆ cells contain elevated levels of extrachromosomal rDNA circles, and silencing at the rDNA locus is impaired in an acs2∆ strain. These findings indicate that Acs2p-mediated synthesis of acetyl-CoA in the nucleus functions to promote rDNA silencing and replicative longevity in yeast.

Keywords

Acetyl-coenzyme A Aging Nucleus Saccharomyces cerevisiae 

Supplementary material

11010_2009_209_MOESM1_ESM.pdf (314 kb)
Supplementary material 1 (PDF 314 kb)

References

  1. 1.
    Starai VJ, Escalante-Semerena JC (2004) Acetyl-coenzyme A synthetase (AMP forming). Cell Mol Life Sci 61:2020–2030CrossRefPubMedGoogle Scholar
  2. 2.
    Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005) Resurrecting ancestral alcohol dehydrogenases from yeast. Nat Genet 37:630–635CrossRefPubMedGoogle Scholar
  3. 3.
    van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959CrossRefPubMedGoogle Scholar
  4. 4.
    Klein HP, Jahnke L (1968) Cellular localization of acetyl-coenzyme A synthetase in yeast. J Bacteriol 96:1632–1639PubMedGoogle Scholar
  5. 5.
    Klein HP, Jahnke L (1971) Variations in the localization of acetyl-coenzyme A synthetase in aerobic yeast cells. J Bacteriol 106:596–602PubMedGoogle Scholar
  6. 6.
    Klein HP, Jahnke L (1979) Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae. J Bacteriol 137:179–184PubMedGoogle Scholar
  7. 7.
    Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691CrossRefPubMedGoogle Scholar
  8. 8.
    Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217CrossRefPubMedGoogle Scholar
  9. 9.
    Sinclair D, Mills K, Guarente L (1998) Aging in Saccharomyces cerevisiae. Annu Rev Microbiol 52:533–560CrossRefPubMedGoogle Scholar
  10. 10.
    Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235CrossRefPubMedGoogle Scholar
  11. 11.
    Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103:10224–10229CrossRefPubMedGoogle Scholar
  12. 12.
    Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC (2002) Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392CrossRefPubMedGoogle Scholar
  13. 13.
    Wenzel TJ, van den Berg MA, Visser W, van den Berg JA, Steensma HY (1992) Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex. Eur J Biochem 209:697–705CrossRefPubMedGoogle Scholar
  14. 14.
    van den Berg MA, Steensma HY (1995) ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231:704–713CrossRefPubMedGoogle Scholar
  15. 15.
    Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41CrossRefPubMedGoogle Scholar
  16. 16.
    Falcon AA, Aris JP (2003) Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J Biol Chem 278:41607–41617CrossRefPubMedGoogle Scholar
  17. 17.
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedGoogle Scholar
  18. 18.
    Dove JE, Brockenbrough JS, Aris JP (1998) Isolation of nuclei and nucleoli from the yeast Saccharomyces cerevisiae. In: Berrios M (ed) Nuclear structure and function. Academic Press, London, pp 33–46Google Scholar
  19. 19.
    Chen SP, Brockenbrough JS, Dove JE, Aris JP (1997) Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J Biol Chem 272:10839–10846CrossRefPubMedGoogle Scholar
  20. 20.
    Wu P, Brockenbrough JS, Metcalfe AC, Chen S, Aris JP (1998) Nop5p is a small nucleolar ribonucleoprotein component required for pre-18 S rRNA processing in yeast. J Biol Chem 273:16453–16463CrossRefPubMedGoogle Scholar
  21. 21.
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2009) Current protocols in molecular biology. Greene Publishing and Wiley-Interscience, New York, 4800 ppGoogle Scholar
  22. 22.
    Yakunin AF, Hallenbeck PC (1998) A luminol/iodophenol chemiluminescent detection system for western immunoblots. Anal Biochem 258:146–149CrossRefPubMedGoogle Scholar
  23. 23.
    de Beus E, Brockenbrough JS, Hong B, Aris JP (1994) Yeast NOP2 encodes an essential nucleolar protein with homology to a human proliferation marker. J Cell Biol 127:1799–1813CrossRefPubMedGoogle Scholar
  24. 24.
    Aris JP, Blobel G (1991) Isolation of yeast nuclei. Methods Enzymol 194:735–749CrossRefPubMedGoogle Scholar
  25. 25.
    McVey M, Kaeberlein M, Tissenbaum HA, Guarente L (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 157:1531–1542PubMedGoogle Scholar
  26. 26.
    Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042CrossRefPubMedGoogle Scholar
  27. 27.
    Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC (2004) A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr Opin Microbiol 7:115–119CrossRefPubMedGoogle Scholar
  28. 28.
    Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC (2003) Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–555PubMedGoogle Scholar
  29. 29.
    Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864CrossRefPubMedGoogle Scholar
  30. 30.
    North BJ, Sinclair DA (2007) Sirtuins: a conserved key unlocking AceCS activity. Trends Biochem Sci 32:1–4CrossRefPubMedGoogle Scholar
  31. 31.
    Habeler G, Natter K, Thallinger GG, Crawford ME, Kohlwein SD, Trajanoski Z (2002) YPL.db: the yeast protein localization database. Nucleic Acids Res 30:80–83CrossRefPubMedGoogle Scholar
  32. 32.
    Natter K, Leitner P, Faschinger A, Wolinski H, McCraith S, Fields S, Kohlwein SD (2005) The spatial organization of lipid synthesis in the yeast Saccharomyces cerevisiae derived from large scale green fluorescent protein tagging and high resolution microscopy. Mol Cell Proteomics 4:662–672CrossRefPubMedGoogle Scholar
  33. 33.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183CrossRefPubMedGoogle Scholar
  34. 34.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574CrossRefPubMedGoogle Scholar
  35. 35.
    Oender K, Loeffler M, Doppler E, Eder M, Lach S, Heinrich F, Karl T, Moesl R, Hundsberger H, Klade T, Eckl P, Dickinson JR, Breitenbach M, Koller L (2003) Translational regulator RpL10p/Grc5p interacts physically and functionally with Sed1p, a dynamic component of the yeast cell surface. Yeast 20:281–294CrossRefPubMedGoogle Scholar
  36. 36.
    Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nat Genet 16:277–282CrossRefPubMedGoogle Scholar
  37. 37.
    Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329CrossRefPubMedGoogle Scholar
  38. 38.
    Ivessa AS, Schneiter R, Kohlwein SD (1997) Yeast acetyl-CoA carboxylase is associated with the cytoplasmic surface of the endoplasmic reticulum. Eur J Cell Biol 74:399–406PubMedGoogle Scholar
  39. 39.
    Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435CrossRefPubMedGoogle Scholar
  40. 40.
    Muller I (1985) Parental age and the life-span of zygotes of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 51:1–10CrossRefPubMedGoogle Scholar
  41. 41.
    Jazwinski SM (2005) Rtg2 protein: at the nexus of yeast longevity and aging. FEMS Yeast Res 5:1253–1259CrossRefPubMedGoogle Scholar
  42. 42.
    Epstein CB, Waddle JA, Hale WIV, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308PubMedGoogle Scholar
  43. 43.
    Jiang JC, Kirchman PA, Allen M, Jazwinski SM (2004) Suppressor analysis points to the subtle role of the LAG1 ceramide synthase gene in determining yeast longevity. Exp Gerontol 39:999–1009CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Alaric A. Falcón
    • 1
    • 2
  • Shaoping Chen
    • 1
  • Michael S. Wood
    • 1
  • John P. Aris
    • 1
  1. 1.Department of Anatomy and Cell Biology, Health Science CenterUniversity of FloridaGainesvilleUSA
  2. 2.Department of Nutritional Sciences and ToxicologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations