The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor

  • 362 Accesses

  • 21 Citations


C-kit-positive neonatal cardiomyocytes (NCMs) contribute to myocardial regeneration. However, the myocardium itself cannot give rise to a robust regenerative response owing to the limited numbers of c-kit-positive resident stem cells present in the heart. It has been shown that mesenchymal stem cells (MSCs) can enhance cardiac repair via the release of paracrine factors such as insulin-like growth factor (IGF-1). We investigated whether the increased expression of c-kit in NCMs mediates the beneficial effects of MSCs on cardiac repair. MSCs and NCMs were prepared from Lewis rats and co-cultured in a Transwell system, which allowed the diffusion of secreted factors but prevented cell contact between the two cell types. The proliferation of NCMs was determined by BrdU assay. The expression of c-kit was assessed by real-time PCR and flow cytometry. The apoptosis rate of NCMs in response to hypoxia was determined by flow cytometry. We found that the expression of c-kit in NCMs was increased by paracrine factors released by MSCs. The effect of paracrine factors on c-kit expression was attenuated by IGF-1 receptor-neutralizing antibody. Furthermore, we found that increased c-kit expression requires IGF-1 receptor activation via the phosphatidylinositol 3 kinase/Akt-mediated pathway. These findings provide a new paradigm for the biological effects of IGF-1 and have significant implications for understanding the beneficial effects of MSCs on myocardial regeneration.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Xu M, Uemura R, Dai Y, Wang Y, Pasha Z, Ashraf M (2007) In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function. J Mol Cell Cardiol 42:441–448. doi:10.1016/j.yjmcc.2006.10.009

  2. 2.

    Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416. doi:10.1152/physrev.00013.2005

  3. 3.

    Urbanek K, Torella D, Sheikh F, De Angelis A, Nurzynska D, Silvestri F, Beltrami CA, Bussani R, Beltrami AP, Quaini F, Bolli R, Leri A, Kajstura J, Anversa P (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA 102:8692–8697. doi:10.1073/pnas.0500169102

  4. 4.

    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776. doi:10.1016/S0092-8674(03)00687-1

  5. 5.

    Teyssier-Le Discorde M, Prost S, Nandrot E, Kirszenbaum M (1999) Spatial and temporal mapping of c-kit and its ligand, stem cell factor expression during human embryonic haemopoiesis. Br J Haematol 107:247–253. doi:10.1046/j.1365-2141.1999.01725.x

  6. 6.

    Kunisada T, Yoshida H, Yamazaki H, Miyamoto A, Hemmi H, Nishimura E, Shultz LD, Nishikawa S, Hayashi S (1998) Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors. Development 125:2915–2923

  7. 7.

    Anversa P, Kajstura J, Nadal-Ginard B, Leri A (2003) Primitive cells and tissue regeneration. Circ Res 92:579–582. doi:10.1161/01.RES.0000066879.66293.87

  8. 8.

    Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100:10440–10445. doi:10.1073/pnas.1832855100

  9. 9.

    Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103:9226–9231. doi:10.1073/pnas.0600635103

  10. 10.

    Linke A, Muller P, Nurzynska D, Casarsa C, Torella D, Nascimbene A, Castaldo C, Cascapera S, Bohm M, Quaini F, Urbanek K, Leri A, Hintze TH, Kajstura J, Anversa P (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102:8966–8971. doi:10.1073/pnas.0502678102

  11. 11.

    Kitamura Y, Hirotab S (2004) Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 61:2924–2931. doi:10.1007/s00018-004-4273-y

  12. 12.

    Miettinen M, Lasota J (2005) KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 13:205–220. doi:10.1097/01.pai.0000173054.83414.22

  13. 13.

    Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201. doi:10.1038/nm912

  14. 14.

    Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ (2007) Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 354:700–706. doi:10.1016/j.bbrc.2007.01.045

  15. 15.

    Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368. doi:10.1038/nm0405-367

  16. 16.

    Sadat S, Gehmert S, Song YH, Yen Y, Bai X, Gaiser S, Klein H, Alt E (2007) The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun 363:674–679. doi:10.1016/j.bbrc.2007.09.058

  17. 17.

    Li Y, Higashi Y, Itabe H, Song YH, Du J, Delafontaine P (2003) Insulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome C release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway. Arterioscler Thromb Vasc Biol 23:2178–2184. doi:10.1161/01.ATV.0000099788.31333.DB

  18. 18.

    Montessuit C, Palma T, Viglino C, Pellieux C, Lerch R (2006) Effects of insulin-like growth factor-I on the maturation of metabolism in neonatal rat cardiomyocytes. Pflugers Arch 452:380–386. doi:10.1007/s00424-006-0059-4

  19. 19.

    Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J Jr (1995) Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest 95:619–627. doi:10.1172/JCI117706

  20. 20.

    Li X, Yu X, Lin Q, Deng C, Shan Z, Yang M, Lin S (2007) Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol 42:295–303. doi:10.1016/j.yjmcc.2006.07.002

  21. 21.

    Li Y, Yu X, Lin S, Li X, Zhang S, Song YH (2007) Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 356:780–784. doi:10.1016/j.bbrc.2007.03.049

  22. 22.

    Li Y, Song YH, Mohler J, Delafontaine P (2006) ANG II induces apoptosis of human vascular smooth muscle via extrinsic pathway involving inhibition of Akt phosphorylation and increased FasL expression. Am J Physiol Heart Circ Physiol 290:H2116–H2123. doi:10.1152/ajpheart.00551.2005

  23. 23.

    Li M, Naqvi N, Yahiro E, Liu K, Powell PC, Bradley WE, Martin DI, Graham RM, Dell’italia LJ, Husain A (2008) c-kit Is Required for Cardiomyocyte Terminal Differentiation. Circ Res 102:677–685. doi:10.1161/CIRCRESAHA.107.161737

  24. 24.

    Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673. doi:10.1161/01.RES.0000183733.53101.11

  25. 25.

    Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, Keating MT (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969. doi:10.1038/nm1619

  26. 26.

    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344:1750–1757. doi:10.1056/NEJM200106073442303

  27. 27.

    Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14

  28. 28.

    Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci USA 95:8801–8805. doi:10.1073/pnas.95.15.8801

  29. 29.

    Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243. doi:10.1038/415240a

  30. 30.

    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013. doi:10.1038/ncb1101-1009

  31. 31.

    Nguyen TT, Sheppard AM, Kaye PL, Noakes PG (2007) IGF-I and insulin activate mitogen-activated protein kinase via the type 1 IGF receptor in mouse embryonic stem cells. Reproduction 134:41–49. doi:10.1530/REP-06-0087

  32. 32.

    Cao Z, Liu LZ, Dixon DA, Zheng JZ, Chandran B, Jiang BH (2007) Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3 K, MAPK and PKC signaling pathways in human ovarian cancer cells. Cell Signal 19:1542–1553. doi:10.1016/j.cellsig.2007.01.028

Download references


This work was supported by American Heart Association (0765149Y to Y. Li), MacDonald Foundation (07RDM008 to Y. Li), National Institutes of Health (R01HL69509 to Y.J. Geng), and T5 program of Department of Defense (Y.J. Geng), and National Natural Science Foundation of China (30772142, 30571850 to X.Y. Yu).

Author information

Correspondence to Xi-Yong Yu or Yangxin Li.

Additional information

Xi-Yong Yu and Yangxin Li contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, X., Geng, Y., Li, X. et al. The effects of mesenchymal stem cells on c-kit up-regulation and cell-cycle re-entry of neonatal cardiomyocytes are mediated by activation of insulin-like growth factor 1 receptor. Mol Cell Biochem 332, 25 (2009) doi:10.1007/s11010-009-0170-x

Download citation


  • IGF-1
  • Stem cell
  • c-kit
  • Cell-cycle re-entry
  • Apoptosis