Advertisement

Disubstituted diaryl diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities in rat brain homogenates in vitro

  • César Augusto Brüning
  • Marina Prigol
  • Daniela A. Barancelli
  • Cristina Wayne Nogueira
  • Gilson Zeni
Article

Abstract

Toxicological and pharmacological studies demonstrated that the introduction of functional groups into the aromatic ring of diphenyl diselenide alter its effect. The aim of this study was to evaluate the in vitro effect of m-trifluoromethyl-diphenyl diselenide (m-CF3–C6H4Se)2, p-chloro-diphenyl diselenide (p-Cl–C6H4Se)2 and p-methoxyl-diphenyl diselenide (p-CH3O–C6H4Se)2 on δ-aminolevulinate dehydratase (δ-ALA-D) and Na+, K+-ATPase activities in rat brain homogenates. Diselenides inhibited δ-ALA-D activity (IC50 4–6 μM [concentration inhibiting 50%]), and dithiothreitol (DTT) restored the enzyme activity. ZnCl2 (100 μM) did not restore δ-ALA-D inhibition caused by (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2. Na+, K+-ATPase activity was more sensitive to (p-Cl–C6H4Se)2 and (m-CF3–C6H4Se)2 (IC50 6 μM) than (p-CH3O–C6H4Se)2 and (PhSe)2 (IC50 45 and 31 μM, respectively). DTT restored the activity of Na+, K+-ATPase inhibited by diselenides. The effect of diselenides on Na+/K+-ATPase is dependent on their substitutions in the aromatic ring. The mechanism through which diselenides inhibit δ-ALA-D and Na+, K+-ATPase activities involves the oxidation of thiol groups.

Keywords

Disubstituted diaryl diselenides Selenium Brain Sulfhydryl enzymes 

Notes

Acknowledgments

The financial support by Universidade Federal de Santa Maria (UFSM), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is gratefully acknowledged. C.A.B, C·W.N and G.Z. are recipients of CNPq fellowships.

References

  1. 1.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. doi: 10.1016/S0140-6736(00)02490-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Ostadalova I, Vobechy M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, Ostadal B (2007) Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 300:259–267. doi: 10.1007/s11010-006-9391-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Satyanarayana S, Sekhar JR, Kumar KE, Shannika LB, Rajanna B, Rajanna S (2006) Influence of selenium (antioxidant) on gliclazide induced hypoglycaemia/anti hyperglycaemia in normal/alloxan-induced diabetic rats. Mol Cell Biochem 283:123–127. doi: 10.1007/s11010-006-2387-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285. doi: 10.1021/cr0406559 CrossRefPubMedGoogle Scholar
  5. 5.
    Painter EP (1941) The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem Rev 28:179–213. doi: 10.1021/cr60090a001 CrossRefGoogle Scholar
  6. 6.
    Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110. doi: 10.1016/S0378-4274(02)00384-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Clark RF, Strukle E, Willians SR, Manoguerra AS (1996) Selenium poisoning from a nutritional supplement. JAMA 275:1087–1088. doi: 10.1001/jama.275.14.1087 CrossRefPubMedGoogle Scholar
  8. 8.
    Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64. doi: 10.1016/0891-5849(94)90007-8 CrossRefPubMedGoogle Scholar
  9. 9.
    Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–25. doi: 10.1021/cr010210+ CrossRefPubMedGoogle Scholar
  10. 10.
    Manarin F, Roehrs JA, Prigol M, Alves D, Nogueira CW, Zeni G (2007) Regio- and stereoselective synthesis of vinyl sul.des via PhSeBr-catalyzed hydrothiolation of alkynes. Tetrahedron Lett 48:4805–4808. doi: 10.1016/j.tetlet.2007.05.076 CrossRefGoogle Scholar
  11. 11.
    Alves D, dos Reis JS, Luchese C, Nogueira CW, Zeni G (2008) Synthesis of 3-alkynylselenophene derivatives by a copper-free sonogashira cross-coupling reaction. Eur J Org Chem 2:377–382. doi: 10.1002/ejoc.200700707 CrossRefGoogle Scholar
  12. 12.
    Goeger DE, Ganther HE (1994) Oxidation of dimethyl selenide to dimethyl selenoxide by microsomes from rat liver and flavin-containing monooxygenase from pig liver. Arch Biochem Biophys 310:448–451. doi: 10.1006/abbi.1994.1191 CrossRefPubMedGoogle Scholar
  13. 13.
    Farina M, Folmer V, Bolzan RC, Andrade LH, Zeni G, Braga AL, Rocha JBT (2001) Selenoxides inhibit δ-aminolevulinate dehydratase. Toxicol Lett 119:27–37. doi: 10.1016/S0378-4274(00)00296-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JBT (2003) 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury and cadmium-induced inhibition of δ-aminolevulinate dehydratase. Toxicology 184:85–95. doi: 10.1016/S0300-483X(02)00575-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Folmer V, Soares JCM, Rocha JBT (2002) Oxidative stress in mice is dependent on the free glucose content of the diet. Int J Biochem Cell Biol 34:1279–1285. doi: 10.1016/S1357-2725(02)00065-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Pande M, Flora SJS (2002) Lead induced oxidative damage and its response to combined administration of alfa-lipoic acid and succimers in rats. Toxicology 177:187–196. doi: 10.1016/S0300-483X(02)00223-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Carfagna MA, Ponsler GD, Muhoberac BB (1996) Inhibition of ATPase activity in rat synaptic plasma membranes by simultaneous exposure to metals. Chem Biol Interact 100:53–65. doi: 10.1016/0009-2797(95)03685-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Folmer V, Santos FW, Savegnago L, Brito VB, Nogueira CW, Rocha JBT (2004) High sucrose consumption potentiates the sub-acute cadmium effect on Na+-K+-ATPase but not on and δ-aminolevulinate dehydratase in mice. Toxicol Lett 153:333–341. doi: 10.1016/j.toxlet.2004.06.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Beal MF, Hyman BT, Koroshetz W (1993) Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases. Trends Neurosci 16:125–131. doi: 10.1016/0166-2236(93)90117-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Savegnago L, Trevisan M, Alves D, Rocha JBT, Nogueira CW, Zeni G (2006) Antisecretory and antiulcer effects of diphenyl diselenide. Environ Toxicol Pharmacol 21:86–92. doi: 10.1016/j.etap.2005.07.017 CrossRefGoogle Scholar
  21. 21.
    Savegnago L, Pinto LG, Jesse CR, Alves D, Rocha JBT, Nogueira CW, Zeni G (2007) Antinociceptive properties of diphenyl diselenide: evidences for the mechanism of action. Eur J Pharmacol 555:129–138. doi: 10.1016/j.ejphar.2006.10.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Ghisleni G, Porciúncula LO, Cimarosti H, Rocha JBT, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986:196–199. doi: 10.1016/S0006-8993(03)03193-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Barbosa NBV, Rocha JBT, Wondracek DC, Perottoni J, Zeni G, Nogueira CW (2006) Diphenyl diselenide reduces temporarily hyperglycemia: possible relationship with oxidative stress. Chem Biol Interact 163:230–238. doi: 10.1016/j.cbi.2006.08.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Meotti FC, Borges VC, Zeni G, Rocha JBT, Nogueira CW (2003) Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol Lett 143:9–16. doi: 10.1016/S0378-4274(03)00090-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Rosa RM, Roesler R, Braga AL, Saffi J, Henriques JAP (2007) Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz J Med Biol Res 40:1287–1304PubMedGoogle Scholar
  26. 26.
    Maciel EN, Flores EM, Rocha JBT, Folmer V (2003) Comparative deposition of diphenyl diselenide in liver, kidney, and brain of mice. Bull Environ Contam Toxicol 70:470–476. doi: 10.1007/s00128-003-0010-8 CrossRefPubMedGoogle Scholar
  27. 27.
    Nogueira CW, Meotti FC, Curte E, Pilissão C, Zeni G, Rocha JBT (2003) Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 183:29–37. doi: 10.1016/S0300-483X(02)00423-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Prigol M, Wilhelm EA, Schneider CC, Rocha JBT, Nogueira CW, Zeni G (2007) Involvement of oxidative stress in seizures induced by diphenyl diselenide in rat pups. Brain Res 1147:226–232. doi: 10.1016/j.brainres.2007.01.126 CrossRefPubMedGoogle Scholar
  29. 29.
    Prigol M, Wilhelm EA, Stangherlin EC, Barancelli DA, Nogueira CW, Zeni G (2008) Diphenyl diselenide-induced seizures in rat pups: possible interaction with glutamatergic system. Neurochem Res 33:1573–6903. doi: 10.1007/s11064-007-9538-z CrossRefGoogle Scholar
  30. 30.
    Nogueira CW, Borges VC, Zeni G, Rocha JBT (2003) Organochalcogens effects on δ-aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicology 191:169–178. doi: 10.1016/S0300-483X(03)00250-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Pinto LG, Jesse CR, Nogueira CW, Savegnago L (2008) Evidence for the involvement of glutamatergic and GABAergic systems and protein kinase. A pathway in the antinociceptive effect caused by p-methoxy-diphenyl diselenide in mice. Pharmacol Biochem Behav 88:487–496. doi: 10.1016/j.pbb.2007.10.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Paulmier C (1986) Selenium reagents and intermediates. Organic synthesis. Pergamon, OxfordGoogle Scholar
  33. 33.
    Sassa S (1982) Delta-aminolevulinic acid dehydratase assay. Enzyme 28:133–145PubMedGoogle Scholar
  34. 34.
    Jaffe EK (2000) The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr D 56:115–128. doi: 10.1107/S0907444999014894 CrossRefPubMedGoogle Scholar
  35. 35.
    Emanuelli T, Rocha JBT, Pereira ME, Nascimento PC, Souza DOG, Beber FA (1998) delta-Aminolevulinate dehydratase inhibition by 2,3-dimercaptopropanol is mediated by chelation of zinc from a site involved in maintaining cysteinyl residues in a reduced state. Pharmacol Toxicol 83:95–103. doi: 10.1111/j.1600-0773.1998.tb01451.x CrossRefPubMedGoogle Scholar
  36. 36.
    Barbosa NBV, Rocha JBT, Zeni G, Emanuelli T, Beque MC, Braga AL (1998) Effect of organic forms of selenium on δ-aminolevulinate dehydratase from liver, kidney and brain of adult rats. Toxicol Appl Pharmacol 149:243–253. doi: 10.1006/taap.1998.8373 CrossRefPubMedGoogle Scholar
  37. 37.
    Fiske CH, Subbarow YJ (1925) The calorimetric determination of phosphorus. Biol Chem 66:375–381Google Scholar
  38. 38.
    Jorgensen PL (1986) Structure, function and regulation of Na+–K+-ATPase in the kidney. Kidney Int 29:10–20. doi: 10.1038/ki.1986.3 CrossRefPubMedGoogle Scholar
  39. 39.
    Björnstedt M, Odlander B, Kuprin S, Claesson HE, Holmgrem A (1996) Selenite incubated with NADPH and mammalian thioredoxin reductase yields selenide, which inhibits lipoxygenase and changes the electron spin resonance spectrum of the active site iron. Biochemistry 35:8511–8516. doi: 10.1021/bi9528762 CrossRefPubMedGoogle Scholar
  40. 40.
    Park HS, Park E, Kim MS, Ahn K, Kim IY, Choi EJ (2000) Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem 275:2527–2531. doi: 10.1074/jbc.275.4.2527 CrossRefPubMedGoogle Scholar
  41. 41.
    Gupta N, Porter TD (2001) Inhibition of human squalene monooxigenase by selenium compounds. J Biochem Mol Toxicol 16:18–23. doi: 10.1002/jbt.10014 CrossRefGoogle Scholar
  42. 42.
    Borges VC, Rocha JBT, Nogueira CW (2005) Effect of diphenyl diselenide, diphenyl ditelluride and Ebselen on cerebral Na+ K+-ATPase activity in rats. Toxicology 215:191–197. doi: 10.1016/j.tox.2005.07.002 CrossRefPubMedGoogle Scholar
  43. 43.
    Tsukamoto I, Yoshinaga T, Sano S (1979) The role of zinc with special reference to the essential thiol groups in δ-aminolevulinic acid dehydratase of bovine liver. Biochim Biophys Acta 570:167–178PubMedGoogle Scholar
  44. 44.
    Santos FW, Zeni G, Rocha JBT, do Nascimento PC, Marques MS, Nogueira CW (2005) Efficacy of 2, 3-dimercapto-1-propanesulfonic acid (DMPS) and diphenyl diselenide on cadmium induced testicular damage in mice. Food Chem Toxicol 43:1723–1730. doi: 10.1016/j.fct.2005.05.015 CrossRefPubMedGoogle Scholar
  45. 45.
    Brandão R, Borges LP, de Oliveira R, Rocha JBT, Nogueira CW (2008) Diphenyl diselenide protects against hematological and immunological alterations induced by mercury in mice. J Biochem Mol Toxicol 22:311–319. doi: 10.1002/jbt.20242 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • César Augusto Brüning
    • 1
  • Marina Prigol
    • 1
  • Daniela A. Barancelli
    • 1
  • Cristina Wayne Nogueira
    • 1
  • Gilson Zeni
    • 1
  1. 1.Departamento de Química, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations