Cloning and identification of microRNAs in bovine alveolar macrophages

  • Guangxian Xu
  • Yan Zhang
  • Hao Jia
  • Juan Li
  • Xiaoming Liu
  • John F. Engelhardt
  • Yujiong Wang
Article

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs found in both animal and plant cells. These ~19–26 nucleotide (nt) single-stranded RNAs play role in regulating gene/protein expression by either directly binding to mRNAs and inducing degradation of their target or by translational inhibition of protein expression. In this report, we described the cloning and identification of 22 microRNAs from bovine alveolar macrophage (AM). Eleven of the 22 miRNAs were novel and have not been previously identified in any species, while eight previously unidentified bovine miRNAs were identical to known ortholog miRNAs from human and/or rat (Bta-miR-141, Bta-miR-187, Bta-miR-191, Bta-miR-448, Bta-miR-589, Bta-miR-873, Bta-miR-463, and Bta-miR-562). These results add to the growing database of new miRNAs and suggest new biological functions for miRNAs in AMs. Specially, our data implicates miRNA regulation of antimicrobial targets in alveolar macrophages of bovine lung.

Keywords

MicroRNAs Alveolar macrophage Bovine Identification 

Abbreviation

miRNAs

MicroRNAs

Notes

Acknowledgments

This study was financially supported by a sub-project of National Basic Research Program of China (No: 2006CB504401), the National Natural Science Foundation of China (No: 30860207), the Key Project Cultivation Fund of Scientific and Technological Innovation Project in Universities (No: 706057), the Scientific Research Foundation of Ningxia University (No: ZR200724) and the Scientific Research Project of Colleges and Universities in Ningxia Hui Autonomous Region.

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95. doi: 10.1016/j.biocel.2008.09.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Dennis C (2002) Small RNAs: the genome’s guiding hand? Nature 420:732. doi: 10.1038/420732a CrossRefPubMedGoogle Scholar
  4. 4.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607 CrossRefPubMedGoogle Scholar
  5. 5.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36. doi: 10.1016/S0092-8674(03)00231-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E (2008) Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 10:415–423. doi: 10.2353/jmoldx.2008.080018 CrossRefPubMedGoogle Scholar
  7. 7.
    Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568. doi: 10.1016/j.gde.2005.08.005 CrossRefPubMedGoogle Scholar
  8. 8.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi: 10.1038/nature03552 CrossRefPubMedGoogle Scholar
  9. 9.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230. doi: 10.1038/nature03076 CrossRefPubMedGoogle Scholar
  10. 10.
    Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105(46):17830–17835CrossRefPubMedGoogle Scholar
  11. 11.
    Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831Google Scholar
  12. 12.
    Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818Google Scholar
  13. 13.
    Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764Google Scholar
  14. 14.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedGoogle Scholar
  15. 15.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi: 10.1146/annurev.immunol.17.1.593 CrossRefPubMedGoogle Scholar
  16. 16.
    Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10. doi: 10.1007/s00428-007-0532-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Coutinho LL, Matukumalli LK, Sonstegard TS, Van Tassell CP, Gasbarre LC, Capuco AV, Smith TP (2007) Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol Genomics 29:35–43. doi: 10.1152/physiolgenomics.00081.2006 PubMedGoogle Scholar
  18. 18.
    Russell DG, Dant J, Sturgill-Koszycki S (1996) Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 156:4764–4773PubMedGoogle Scholar
  19. 19.
    Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296PubMedGoogle Scholar
  20. 20.
    Deretic V, Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609. doi: 10.1046/j.1365-2958.1999.01279.x CrossRefPubMedGoogle Scholar
  21. 21.
    Dieli F, Troye-Blomberg M, Ivanyi J, Fournie JJ, Bonneville M, Peyrat MA, Sireci G, Salerno A (2000) Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 30:1512–1519. doi: 10.1002/(SICI)1521-4141(200005)30:5<1512::AID-IMMU1512>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  22. 22.
    Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152PubMedGoogle Scholar
  23. 23.
    Smith RA, Alvarez AJ, Estes DM (2001) The P2X7 purinergic receptor on bovine macrophages mediates mycobacterial death. Vet Immunol Immunopathol 78:249–262. doi: 10.1016/S0165-2427(01)00245-8 CrossRefPubMedGoogle Scholar
  24. 24.
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113PubMedGoogle Scholar
  25. 25.
    Niepmann M (2009) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8(10):1473–1477PubMedGoogle Scholar
  26. 26.
    Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48:648–656. doi: 10.1016/j.jhep.2008.01.019 CrossRefPubMedGoogle Scholar
  27. 27.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. doi: 10.1073/pnas.0605298103 CrossRefPubMedGoogle Scholar
  28. 28.
    O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609. doi: 10.1073/pnas.0610731104 CrossRefPubMedGoogle Scholar
  29. 29.
    Xu G, Li Y, Yang J, Zhou X, Yin X, Liu M, Zhao D (2007) Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem 302:1–7. doi: 10.1007/s11010-006-9395-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803. doi: 10.1038/sj.onc.1210083 CrossRefPubMedGoogle Scholar
  31. 31.
    Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D’Esposito M, Di Lauro R, Verde P (2008) An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28(1):73–84CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88:1358–1366. doi: 10.1038/labinvest.2008.94 CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146. doi: 10.1016/S0014-5793(04)00087-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Ramachandra L, Smialek JL, Shank SS, Convery M, Boom WH, Harding CV (2005) Phagosomal processing of Mycobacterium tuberculosis antigen 85B is modulated independently of mycobacterial viability and phagosome maturation. Infect Immun 73:1097–1105. doi: 10.1128/IAI.73.2.1097-1105.2005 CrossRefPubMedGoogle Scholar
  35. 35.
    Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349:59–68. doi: 10.1016/j.bbrc.2006.07.207 CrossRefPubMedGoogle Scholar
  36. 36.
    Gou D, Zhang H, Baviskar PS, Liu L (2007) Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol Genomics 31:554–562. doi: 10.1152/physiolgenomics.00005.2007 CrossRefPubMedGoogle Scholar
  37. 37.
    Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707. doi: 10.1158/0008-5472.CAN-07-1936 CrossRefPubMedGoogle Scholar
  38. 38.
    Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608. doi: 10.1210/jc.2007-2696 CrossRefPubMedGoogle Scholar
  39. 39.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526. doi: 10.1016/j.pharmthera.2007.09.004 CrossRefPubMedGoogle Scholar
  40. 40.
    Pedersen I, David M (2008) MicroRNAs in the immune response. Cytokine 43:391–394. doi: 10.1016/j.cyto.2008.07.016 CrossRefPubMedGoogle Scholar
  41. 41.
    Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402. doi: 10.1159/000113489 CrossRefPubMedGoogle Scholar
  42. 42.
    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136. doi: 10.1038/sj.onc.1210856 CrossRefPubMedGoogle Scholar
  43. 43.
    Chan SH, Wu CW, Li AF, Chi CW, Lin WC (2008) miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 28:907–911PubMedGoogle Scholar
  44. 44.
    Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360. doi: 10.1261/rna.1034808 CrossRefPubMedGoogle Scholar
  45. 45.
    Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2008) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94(1):320–323CrossRefPubMedGoogle Scholar
  46. 46.
    Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, Nguyen LT, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M (2008) Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 216:418–427. doi: 10.1002/path.2437 CrossRefPubMedGoogle Scholar
  47. 47.
    Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–6763PubMedGoogle Scholar
  48. 48.
    Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121PubMedGoogle Scholar
  49. 49.
    Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44:47–54. doi: 10.1016/j.ymeth.2007.09.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Guangxian Xu
    • 1
  • Yan Zhang
    • 1
  • Hao Jia
    • 1
  • Juan Li
    • 1
  • Xiaoming Liu
    • 1
    • 2
  • John F. Engelhardt
    • 2
  • Yujiong Wang
    • 1
  1. 1.College of Life ScienceNingxia UniversityYinchuanChina
  2. 2.Department of Anatomy and Cell Biology, College of MedicineThe University of IowaIowa CityUSA

Personalised recommendations