Molecular and Cellular Biochemistry

, Volume 329, Issue 1–2, pp 35–44 | Cite as

Developmental function of Nm23/awd: a mediator of endocytosis

Article

Abstract

The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here, we summarize the studies on the Drosophila homolog of the Nm23 gene, named a bnormal w ing d iscs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function.

Keywords

Nm23 awd Prune Killer-of-prune Drosophila 

Notes

Acknowledgements

The work is supported by grants from the National Institutes of Health to T.H. (RO1GM57843) and V.D. (RO1CA128002).

Supplementary material

11010_2009_112_MOESM1_ESM.doc (22 kb)
Supplementary material 1 (DOC 22 kb)

References

  1. 1.
    Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204. doi: 10.1093/jnci/80.3.200 PubMedCrossRefGoogle Scholar
  2. 2.
    Ouatas T, Salerno M, Palmieri D, Steeg PS (2003) Basic and translational advances in cancer metastasis: Nm23. J Bioenerg Biomembr 35:73–79. doi: 10.1023/A:1023497924277 PubMedCrossRefGoogle Scholar
  3. 3.
    Heimann R, Hellman S (2000) Individual characterisation of the metastatic capacity of human breast carcinoma. Eur J Cancer 36:1631–1639. doi: 10.1016/S0959-8049(00)00151-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Sirotkovic-Skerlev M, Krizanac S, Kapitanovic S, Husnjak K, Unusic J, Pavelic K (2005) Expression of c-myc, erbB-2, p53 and nm23-H1 gene product in benign and malignant breast lesions: coexpression and correlation with clinicopathologic parameters. Exp Mol Pathol 79:42–50. doi: 10.1016/j.yexmp.2005.02.004 PubMedCrossRefGoogle Scholar
  5. 5.
    Galani E, Sgouros J, Petropoulou C, Janinis J, Aravantinos G, Dionysiou-Asteriou D, Skarlos D, Gonos E (2002) Correlation of MDR-1, nm23-H1 and H Sema E gene expression with histopathological findings and clinical outcome in ovarian and breast cancer patients. Anticancer Res 22:2275–2280PubMedGoogle Scholar
  6. 6.
    Anwar S, Frayling IM, Scott NA, Carlson GL (2004) Systematic review of genetic influences on the prognosis of colorectal cancer. Br J Surg 91:1275–1291. doi: 10.1002/bjs.4737 PubMedCrossRefGoogle Scholar
  7. 7.
    Ouellet V, Le Page C, Guyot MC, Lussier C, Tonin PN, Provencher DM, Mes-Masson AM (2006) SET complex in serous epithelial ovarian cancer. Int J Cancer 119:2119–2126. doi: 10.1002/ijc.22054 PubMedCrossRefGoogle Scholar
  8. 8.
    An HJ, Kim DS, Park YK, Kim SK, Choi YP, Kang S, Ding B, Cho NH (2006) Comparative proteomics of ovarian epithelial tumors. J Proteome Res 5:1082–1090. doi: 10.1021/pr050461p PubMedCrossRefGoogle Scholar
  9. 9.
    Postel EH, Berberich SJ, Rooney JW, Kaetzel DM (2000) Human NM23/nucleoside diphosphate kinase regulates gene expression through DNA binding to nuclease-hypersensitive transcriptional elements. J Bioenerg Biomembr 32:277–284. doi: 10.1023/A:1005541114029 PubMedCrossRefGoogle Scholar
  10. 10.
    Ma D, Xing Z, Liu B, Pedigo NG, Zimmer SG, Bai Z, Postel EH, Kaetzel DM (2002) NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J Biol Chem 277:1560–1567. doi: 10.1074/jbc.M108359200 PubMedCrossRefGoogle Scholar
  11. 11.
    Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112:659–672. doi: 10.1016/S0092-8674(03)00150-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Engel M, Veron M, Theisinger B, Lacombe ML, Seib T, Dooley S, Welter C (1995) A novel serine/threonine-specific protein phosphotransferase activity of Nm23/nucleoside-diphosphate kinase. Eur J Biochem 234:200–207. doi: 10.1111/j.1432-1033.1995.200_c.x PubMedCrossRefGoogle Scholar
  13. 13.
    Inoue H, Takahashi M, Oomori A, Sekiguchi M, Yoshioka T (1996) A novel function for nucleoside diphosphate kinase in Drosophila. Biochem Biophys Res Commun 218:887–892. doi: 10.1006/bbrc.1996.0158 PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner PD, Steeg PS, Vu ND (1997) Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94:9000–9005. doi: 10.1073/pnas.94.17.9000 PubMedCrossRefGoogle Scholar
  15. 15.
    Besant PG, Tan E, Attwood PV (2003) Mammalian protein histidine kinases. Int J Biochem Cell Biol 35:297–309. doi: 10.1016/S1357-2725(02)00257-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Steeg PS, Palmieri D, Ouatas T, Salerno M (2003) Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 190:1–12. doi: 10.1016/S0304-3835(02)00499-8 PubMedCrossRefGoogle Scholar
  17. 17.
    Biggs J, Hersperger E, Steeg PS, Liotta LA, Shearn A (1990) A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell 63:933–940. doi: 10.1016/0092-8674(90)90496-2 PubMedCrossRefGoogle Scholar
  18. 18.
    Timmons L, Shearn A (1996) Germline transformation using a prune cDNA rescues prune/killer of prune lethality and the prune eye color phenotype in Drosophila. Genetics 144:1589–1600PubMedGoogle Scholar
  19. 19.
    Sturtevant AH (1956) A highly specific complementary lethal system in Drosophila melanogaster. Genetics 41:118–123PubMedGoogle Scholar
  20. 20.
    Dearolf CR, Hersperger E, Shearn A (1988) Developmental consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol 129:159–168. doi: 10.1016/0012-1606(88)90170-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Dearolf CR, Tripoulas N, Biggs J, Shearn A (1988) Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol 129:169–178. doi: 10.1016/0012-1606(88)90171-6 PubMedCrossRefGoogle Scholar
  22. 22.
    Santos AC, Lehmann R (2004) Germ cell specification and migration in Drosophila and beyond. Curr Biol 14:R578–R589. doi: 10.1016/j.cub.2004.07.018 PubMedCrossRefGoogle Scholar
  23. 23.
    Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IM, King CR, Liotta LA, Steeg PS (1989) Reduced Nm23/Awd protein in tumour metastasis and aberrant Drosophila development. Nature 342:177–180. doi: 10.1038/342177a0 PubMedCrossRefGoogle Scholar
  24. 24.
    Nickerson JA, Wells WW (1984) The microtubule-associated nucleoside diphosphate kinase. J Biol Chem 259:11297–11304PubMedGoogle Scholar
  25. 25.
    Wallet V, Mutzel R, Troll H, Barzu O, Wurster B, Veron M, Lacombe ML (1990) Dictyostelium nucleoside diphosphate kinase highly homologous to Nm23 and Awd proteins involved in mammalian tumor metastasis and Drosophila development. J Natl Cancer Inst 82:1199–1202. doi: 10.1093/jnci/82.14.1199 PubMedCrossRefGoogle Scholar
  26. 26.
    Lascu I, Chaffotte A, Limbourg-Bouchon B, Veron M (1992) A Pro/Ser substitution in nucleoside diphosphate kinase of Drosophila melanogaster (mutation killer of prune) affects stability but not catalytic efficiency of the enzyme. J Biol Chem 267:12775–12781PubMedGoogle Scholar
  27. 27.
    Timmons L, Xu J, Hersperger G, Deng XF, Shearn A (1995) Point mutations in awdKpn which revert the prune/Killer of prune lethal interaction affect conserved residues that are involved in nucleoside diphosphate kinase substrate binding and catalysis. J Biol Chem 270:23021–23030. doi: 10.1074/jbc.270.39.23021 PubMedCrossRefGoogle Scholar
  28. 28.
    Xu J, Liu LZ, Deng XF, Timmons L, Hersperger E, Steeg PS, Veron M, Shearn A (1996) The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function. Dev Biol 177:544–557. doi: 10.1006/dbio.1996.0184 CrossRefGoogle Scholar
  29. 29.
    Lifschytz E, Falk R (1969) A genetic analysis of the killer-prune (K-pn) locus of Drosophila melanogaster. Genetics 62:353–358PubMedGoogle Scholar
  30. 30.
    Biggs J, Tripoulas N, Hersperger E, Dearolf C, Shearn A (1988) Analysis of the lethal interaction between the prune and Killer of prune mutations of Drosophila. Genes Dev 2:1333–1343. doi: 10.1101/gad.2.10.1333 PubMedCrossRefGoogle Scholar
  31. 31.
    Hama H, Almaula N, Lerner CG, Inouye S, Inouye M (1991) Nucleoside diphosphate kinase from Escherichia coli; its overproduction and sequence comparison with eukaryotic enzymes. Gene 105:31–36. doi: 10.1016/0378-1119(91)90510-I PubMedCrossRefGoogle Scholar
  32. 32.
    Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS (1997) Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 272:5525–5532. doi: 10.1074/jbc.272.9.5525 PubMedCrossRefGoogle Scholar
  33. 33.
    MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS (1996) Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 271:25107–25116. doi: 10.1074/jbc.271.41.25107 PubMedCrossRefGoogle Scholar
  34. 34.
    Teng DH, Bender LB, Engele CM, Tsubota S, Venkatesh T (1991) Isolation and characterization of the prune locus of Drosophila melanogaster. Genetics 128:373–380PubMedGoogle Scholar
  35. 35.
    Teng DH, Engele CM, Venkatesh TR (1991) A product of the prune locus of Drosophila is similar to mammalian GTPase-activating protein. Nature 353:437–440. doi: 10.1038/353437a0 PubMedCrossRefGoogle Scholar
  36. 36.
    Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23:17–19. doi: 10.1016/S0968-0004(97)01162-6 PubMedCrossRefGoogle Scholar
  37. 37.
    Reymond A, Volorio S, Merla G, Al-Maghtheh M, Zuffardi O, Bulfone A, Ballabio A, Zollo M (1999) Evidence for interaction between human PRUNE and nm23-H1 NDPKinase. Oncogene 18:7244–7252. doi: 10.1038/sj.onc.1203140 PubMedCrossRefGoogle Scholar
  38. 38.
    D’Angelo A, Garzia L, Andre A, Carotenuto P, Aglio V, Guardiola O, Arrigoni G, Cossu A, Palmieri G, Aravind L, Zollo M (2004) Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5:137–149. doi: 10.1016/S1535-6108(04)00021-2 PubMedCrossRefGoogle Scholar
  39. 39.
    Fan CL, Hall LM, Skrinska AJ, Brown GM (1976) Correlation of guanosine triphosphate cyclohydrolase activity and the synthesis of pterins in Drosophila melanogaster. Biochem Genet 14:271–280. doi: 10.1007/BF00484766 PubMedCrossRefGoogle Scholar
  40. 40.
    Evans BA, Howells AJ (1978) Control of drosopterin synthesis in Drosophila melanogaster: mutants showing an altered pattern of GTP cyclohydrolase activity during development. Biochem Genet 16:13–26. doi: 10.1007/BF00484381 PubMedCrossRefGoogle Scholar
  41. 41.
    Timmons L, Shearn A (1997) prune/Killer of prune: a conditional dominant lethal interaction in Drosophila. Adv Genet 35:207–252. doi: 10.1016/S0065-2660(08)60451-4 PubMedCrossRefGoogle Scholar
  42. 42.
    Provost E, Shearn A (2006) The suppressor of Killer of prune, a unique glutathione S-transferase. J Bioenerg Biomembr 38:189–195. doi: 10.1007/s10863-006-9034-1 PubMedCrossRefGoogle Scholar
  43. 43.
    Provost E, Hersperger G, Timmons L, Ho WQ, Hersperger E, Alcazar R, Shearn A (2006) Loss-of-function mutations in a glutathione S-transferase suppress the prune-Killer of prune lethal interaction. Genetics 172:207–219. doi: 10.1534/genetics.105.044669 PubMedCrossRefGoogle Scholar
  44. 44.
    Pickett CB, Lu AY (1989) Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem 58:743–764. doi: 10.1146/annurev.bi.58.070189.003523 PubMedCrossRefGoogle Scholar
  45. 45.
    Kosaka T, Ikeda K (1983) Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol 14:207–225. doi: 10.1002/neu.480140305 PubMedCrossRefGoogle Scholar
  46. 46.
    Krishnan KS, Rikhy R, Rao S, Shivalkar M, Mosko M, Narayanan R, Etter P, Estes PS, Ramaswami M (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30:197–210. doi: 10.1016/S0896-6273(01)00273-2 PubMedCrossRefGoogle Scholar
  47. 47.
    Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel-Lindau disease. Lancet 361:2059–2067. doi: 10.1016/S0140-6736(03)13643-4 PubMedCrossRefGoogle Scholar
  48. 48.
    Adryan B, Decker HJ, Papas TS, Hsu T (2000) Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19:2803–2811. doi: 10.1038/sj.onc.1203611 PubMedCrossRefGoogle Scholar
  49. 49.
    Dammai V, Adryan B, Lavenburg KR, Hsu T (2003) Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 17:2812–2824. doi: 10.1101/gad.1096903 PubMedCrossRefGoogle Scholar
  50. 50.
    Glazer L, Shilo BZ (1991) The Drosophila FGF-R homolog is expressed in the embryonic tracheal system and appears to be required for directed tracheal cell extension. Genes Dev 5:697–705. doi: 10.1101/gad.5.4.697 PubMedCrossRefGoogle Scholar
  51. 51.
    Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101. doi: 10.1016/S0092-8674(00)81803-6 PubMedCrossRefGoogle Scholar
  52. 52.
    Hsouna A, Lawal HO, Izevbaye I, Hsu T, O’Donnell JM (2007) Drosophila dopamine synthesis pathway genes regulate tracheal morphogenesis. Dev Biol 308:30–43. doi: 10.1016/j.ydbio.2007.04.047 PubMedCrossRefGoogle Scholar
  53. 53.
    Krishnakumar S, Burton D, Rasco J, Chen X, O’Donnell J (2000) Functional interactions between GTP cyclohydrolase I and tyrosine hydroxylase in Drosophila. J Neurogenet 14:1–23. doi: 10.3109/01677060009083474 PubMedCrossRefGoogle Scholar
  54. 54.
    Montell DJ (2003) Border-cell migration: the race is on. Nat Rev Mol Cell Biol 4:13–24. doi: 10.1038/nrm1006 PubMedCrossRefGoogle Scholar
  55. 55.
    Rørth P (2002) Initiating and guiding migration: lessons from border cells. Trends Cell Biol 12:325–331PubMedCrossRefGoogle Scholar
  56. 56.
    Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26. doi: 10.1016/S0092-8674(01)00502-5 PubMedCrossRefGoogle Scholar
  57. 57.
    McDonald JA, Pinheiro EM, Montell DJ (2003) PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130:3469–3478. doi: 10.1242/dev.00574 PubMedCrossRefGoogle Scholar
  58. 58.
    Nallamothu G, Woolworth JA, Dammai V, Hsu T (2008) Awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol Cell Biol 28:1964–1973. doi: 10.1128/MCB.01743-07 PubMedCrossRefGoogle Scholar
  59. 59.
    Deitcher D (2001) Shibire’s enhancer is cancer’s suppressor. Trends Neurosci 24:625–626. doi: 10.1016/S0166-2236(00)01927-5 PubMedCrossRefGoogle Scholar
  60. 60.
    Wu L, Niemeyer B, Colley N, Socolich M, Zuker CS (1995) Regulation of PLC-mediated signalling in vivo by CDP-diacylglycerol synthase. Nature 373:216–222. doi: 10.1038/373216a0 PubMedCrossRefGoogle Scholar
  61. 61.
    Roth MG (2004) Phosphoinositides in constitutive membrane traffic. Physiol Rev 84:699–730. doi: 10.1152/physrev.00033.2003 PubMedCrossRefGoogle Scholar
  62. 62.
    Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33:1285–1289. doi: 10.1042/BST20051285 PubMedCrossRefGoogle Scholar
  63. 63.
    Lee A, Frank DW, Marks MS, Lemmon MA (1999) Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Curr Biol 9:261–264. doi: 10.1016/S0960-9822(99)80115-8 PubMedCrossRefGoogle Scholar
  64. 64.
    Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL (1998) Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 8:1399–1402. doi: 10.1016/S0960-9822(98)00022-0 PubMedCrossRefGoogle Scholar
  65. 65.
    Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C (2002) ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936. doi: 10.1038/ncb881 PubMedCrossRefGoogle Scholar
  66. 66.
    Otsuki Y, Tanaka M, Yoshii S, Kawazoe N, Nakaya K, Sugimura H (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci USA 98:4385–4390. doi: 10.1073/pnas.071411598 PubMedCrossRefGoogle Scholar
  67. 67.
    Iwashita S, Fujii M, Mukai H, Ono Y, Miyamoto M (2004) Lbc proto-oncogene product binds to and could be negatively regulated by metastasis suppressor nm23-H2. Biochem Biophys Res Commun 320:1063–1068. doi: 10.1016/j.bbrc.2004.06.067 PubMedCrossRefGoogle Scholar
  68. 68.
    Tseng YH, Vicent D, Zhu J, Niu Y, Adeyinka A, Moyers JS, Watson PH, Kahn CR (2001) Regulation of growth and tumorigenicity of breast cancer cells by the low molecular weight GTPase Rad and nm23. Cancer Res 61:2071–2079PubMedGoogle Scholar
  69. 69.
    Hsu T, Adereth Y, Kose N, Dammai V (2006) Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 281:12069–12080. doi: 10.1074/jbc.M511621200 PubMedCrossRefGoogle Scholar
  70. 70.
    Frew IJ, Krek W (2007) Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol 19:685–690. doi: 10.1016/j.ceb.2007.10.001 PubMedCrossRefGoogle Scholar
  71. 71.
    Barraud P, Amrein L, Dobremez E, Dabernat S, Masse K, Larou M, Daniel JY, Landry M (2002) Differential expression of nm23 genes in adult mouse dorsal root ganglia. J Comp Neurol 444:306–323. doi: 10.1002/cne.10150 PubMedCrossRefGoogle Scholar
  72. 72.
    Eggenschwiler JT, Anderson KV (2007) Cilia and developmental signaling. Annu Rev Cell Dev Biol 23:345–373. doi: 10.1146/annurev.cellbio.23.090506.123249 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory Medicine, Hollings Cancer CenterMedical University of South CarolinaCharlestonUSA

Personalised recommendations