Molecular and Cellular Biochemistry

, Volume 329, Issue 1–2, pp 45–50 | Cite as

Double knockout Nme1/Nme2 mouse model suggests a critical role for NDP kinases in erythroid development

  • Edith Horn Postel
  • Xiaoming Zou
  • Daniel A. Notterman
  • Krista M. D. La Perle


Nm23/NDP kinases A and B encoded by the Nme1/Nme2 genes are multifunctional enzymes responsible for the majority of NDP kinase activity in mammals. This review summarizes recent studies on their physiological roles using a mouse model in which both Nme1 and Nme2 genes have been deleted. The double knockout mice are stunted in growth and die perinatally. Additionally, these mice display hematologic phenotypes, including severe anemia, abnormal erythroid cell development, loss of the iron transport receptor molecule TfR1, and reduced iron uptake by Nme1 −/− /Nme2 −/− erythroid cells. We hypothesize that Nm23/NDP kinases regulate TfR1 gene expression in erythroid cells in some manner, and that defective iron transport into these cells is responsible for the anemia and death. This Nme1/Nme2 mouse model also links nucleotide metabolism with erythropoiesis, suggesting alternative or additional mechanisms that may explain the observed phenomena.


Erythropoiesis development Transcriptional control Metabolic disorder 



This work is supported by NIH/NCI grant RO1 CA76496 (to EHP). The double heterozygous knockout mice were a gift from Amgen Inc. The authors acknowledge helpful discussions with Drs. Achille Iolascon and Stefano Rivella.


  1. 1.
    Xu J, Liu LZ, Deng XF et al (1996) The enzymatic activity of Drosophila AWD/NDP kinase is necessary but not sufficient for its biological function. Dev Biol 177:544–557. doi: 10.1006/dbio.1996.0184 CrossRefGoogle Scholar
  2. 2.
    Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308. doi: 10.1023/A:1005597231776 PubMedCrossRefGoogle Scholar
  3. 3.
    Steeg PS, Bevilacqua G, Kopper L et al (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–204PubMedCrossRefGoogle Scholar
  4. 4.
    Leone A, Flatow U, King CR et al (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm3-transfected melanoma cells. Cell 65:25–35PubMedCrossRefGoogle Scholar
  5. 5.
    Otero AS (2000) NM23/nucleoside diphosphate kinase and signal transduction. J Bioenerg Biomembr 32:269–275PubMedCrossRefGoogle Scholar
  6. 6.
    Kimura N, Shimada N, Fukuda M et al (2000) Regulation of cellular functions by nucleoside diphosphate kinases in mammals. J Bioenerg Biomembr 32:309–315PubMedCrossRefGoogle Scholar
  7. 7.
    Postel EH, Berberich SJ, Flint SJ et al (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480PubMedCrossRefGoogle Scholar
  8. 8.
    Berberich SJ, Postel EH (1995) PuF/NM23-H2/NDPK-B transactivates a human c-myc promoter-CAT gene via a functional nuclease hypersensitive element. Oncogene 10:2343–2347PubMedGoogle Scholar
  9. 9.
    Ma D, Xing Z, Liu B et al (2002) NM23-H1 and NM23-H2 repress transcriptional activities of nuclease-hypersensitive elements in the platelet-derived growth factor-A promoter. J Biol Chem 277:1560–1567PubMedCrossRefGoogle Scholar
  10. 10.
    Arnaud-Dabernat S, Masse K, Smani M et al (2004) Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells, both NDP kinases protect the cells from oxidative-stress induced death. Exp Cell Res 301:293–304PubMedCrossRefGoogle Scholar
  11. 11.
    Goswami SC, Yoon JH, Abramczyk B et al (2006) Molecular and functional interactions between Escherichia coli nucleoside-diphosphate kinase and the uracil-DNA glycosylase Ung. J Biol Chem 81:32131–32139CrossRefGoogle Scholar
  12. 12.
    Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3′-5′ exonuclease activity. J Biol Chem 279:18073–18084PubMedCrossRefGoogle Scholar
  13. 13.
    Nordman J, Wright A (2008) The relationship between dNTP pool levels and mutagenesis in an Escherichia coli NDP kinase mutant. Proc Natl Acad Sci U S A 105:10197–10202PubMedCrossRefGoogle Scholar
  14. 14.
    Yang M, Jarrett S, Craven R, Kaetzel DM (2009) Ynk1, the yeast homologue of human NM23-H1, is required for repair of UV- and etoposide-damaged DNA. Mutation Res 660:74–78 (Short Communication)PubMedGoogle Scholar
  15. 15.
    Roymans D, Willems R, Van Bockstaele DR et al (2002) Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: possible consequences in tumor metastasis. Clin Exp Metastasis 19:465–476PubMedCrossRefGoogle Scholar
  16. 16.
    Lombardi D, Mileo AM (2003) Protein interactions provide new insight into Nm23/nucleoside diphosphate kinase functions. J Bioenerg Biomemb 35:67–71CrossRefGoogle Scholar
  17. 17.
    Curtis CD, Likhite VS, McLeod IX et al (2007) Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue, H1 and estrogen receptor alpha alters estrogen-responsive gene expression. Cancer Res 67:10600–10607PubMedCrossRefGoogle Scholar
  18. 18.
    Horak CE, Mendoza A, Vega-Valle E et al (2007) Nm23-H1 suppresses metastasis by inhibiting expression of the lysophosphatidic acid receptor EDG2. Cancer Res 67:11751–11759PubMedCrossRefGoogle Scholar
  19. 19.
    Rayner K, Chen YX, Hibbert B et al (2008) Discovery of NM23-H2 as an estrogen receptor beta-associated protein: role in estrogen-induced gene transcription and cell migration. J Steroid Biochem Mol Biol 108:72–81PubMedCrossRefGoogle Scholar
  20. 20.
    Lacombe ML, Milon L, Munier A et al (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomemb 32:247–258CrossRefGoogle Scholar
  21. 21.
    Backer JM, Mendola CE, Kovesdi I et al (1993) Chromosomal localization and nucleoside diphosphate kinase activity of human metastasis-suppressor genes NM23-1 and NM23-2. Oncogene 8:497–502PubMedGoogle Scholar
  22. 22.
    Dumas C, Lascu I, Morera S et al (1992) X-ray structure of nucleoside diphosphate kinase. EMBO J 11:3203–3208PubMedGoogle Scholar
  23. 23.
    Janin J, Dumas C, Morera S et al (2000) Three-dimensional structure of nucleoside diphosphate kinase. J Bioenerg Biomembr 32:215–225PubMedCrossRefGoogle Scholar
  24. 24.
    Lascu I, Gonin P (2000) The catalytic mechanism of nucleoside diphosphate kinases. J Bioenerg Biomembr 32:237–246PubMedCrossRefGoogle Scholar
  25. 25.
    Arnaud-Dabernat S, Bourbon PM, Dierich A et al (2003) Knockout mice as model systems for studying nm23/NDP kinase gene functions. J Bioenerg Biomembr 35:19–30PubMedCrossRefGoogle Scholar
  26. 26.
    Boissan M, Wendum D, Arnaud-Dabernat S et al (2005) Increased lung metastasis in transgenic NM23-null/SV40 mice with hepatocellular carcinoma. J Natl Cancer Inst 97:836–845PubMedCrossRefGoogle Scholar
  27. 27.
    Timmons L, Shearn A (2000) Role of AWD/Nucleoside diphosphate kinase in Drosophila development. J Bioenerg Biomembr 32:293–300PubMedCrossRefGoogle Scholar
  28. 28.
    Hama H, Almaula N, Lerner CG et al (1991) Nucleoside diphosphate kinase from Escherichia coli; its overproduction and sequence comparison with eukaryotic enzymes. Gene 105:31–36PubMedCrossRefGoogle Scholar
  29. 29.
    Fukuchi T, Nikawa J, Kimura N et al (1993) Isolation, overexpression and disruption of a Saccharomyces cerevisiae YNK gene encoding nucleoside diphosphate kinase. Gene 129:141–146PubMedCrossRefGoogle Scholar
  30. 30.
    Bernard MA, Ray NB, Olcott MC et al (2000) Metabolic functions of microbial nucleoside diphosphate kinases. J Bioenerg Biomembr 32:259–267PubMedCrossRefGoogle Scholar
  31. 31.
    Miller JH, Funchain P, Clendenin W et al (2002) Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. Genetics 162:5–13PubMedGoogle Scholar
  32. 32.
    Postel EH, Wohlman I, Zou X et al (2009) Targeted deletion of Nm23/nucleoside diphosphate kinase A and B reveals their requirement for definitive erythropoiesis during development of the mouse embryo. Dev Dyn 238:775–787PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang J, Socolovsky M, Gross AW et al (2003) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102:3938–3946PubMedCrossRefGoogle Scholar
  34. 34.
    Medvinsky AL, Dzierzak EA (1998) Development of the definitive hematopoietic hierarchy in the mouse. Dev Comp Immunol 22:289–301PubMedCrossRefGoogle Scholar
  35. 35.
    Lensch MW, Daley GQ (2004) Origins of mammalian hematopoiesis: in vivo paradigms and in vitro models. Curr Topics Dev Biol 60:127–196CrossRefGoogle Scholar
  36. 36.
    Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117:285–297PubMedCrossRefGoogle Scholar
  37. 37.
    Levy JE, Jin O, Fujiwara Y et al (1999) Transferrin receptor is necessary for development of erythrocytes and the nervous system [Letter]. Nat Genet 21:396–399PubMedCrossRefGoogle Scholar
  38. 38.
    Postel EH, Abramczyk BM, Levit M et al. Catalysis of DNA cleavage and nucleoside diphosphate synthesis NM23-H2/NDP kinase share an active site that implies a DNA repair function. Proc Natl Acad Sci U S A 97: 14194–14199Google Scholar
  39. 39.
    Lok CN, Ponka P (2000) Identification of an erythroid active element in the transferrin receptor gene. J Biol Chem 275:24185–24190PubMedCrossRefGoogle Scholar
  40. 40.
    Wang E, Albritton L, Ross SR (2005) Identification of the segments of the mouse transferrin receptor 1 required for mouse mammary tumor virus infection. J Biol Chem 281:10243–10249CrossRefGoogle Scholar
  41. 41.
    Hildebrandt M, Lacombe M-L, Mesnildrey S, Veron MA (1995) Human NDP-kinase B specifically binds single-stranded poly-pyrimidine sequences. Nucleic Acids Res 23:3858–3864PubMedCrossRefGoogle Scholar
  42. 42.
    Miskimins WK, King F, Miskimins R (1997) Phosphatidylinositol 3-kinase inhibitor wortmannin blocks mitogenic activation of the transferrin receptor gene promoter in late G1. Cell Growth Differ 8:565–570PubMedGoogle Scholar
  43. 43.
    Joosten M, Blazquez-Domingo M, Lindeboom F et al (2004) Translational control of putative protooncogene Nm23-M2 by cytokines via phosphoinositide 3-kinase signaling. J Biol Chem 279:38169–38176PubMedCrossRefGoogle Scholar
  44. 44.
    Postel EH (1999) Cleavage of DNA by human NM23-H2/nucleoside diphosphate kinase involves formation of a covalent protein-DNA complex. J Biol Chem 274:22821–22829PubMedCrossRefGoogle Scholar
  45. 45.
    Fan Z, Beresford PJ, Oh DY et al (2003) Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 11:659–672CrossRefGoogle Scholar
  46. 46.
    Gordon DM, Lyver ER, Lesuisse E et al (2006) GTP in the mitochondrial matrix plays a crucial role in organellar iron homoeostasis. Biochem J 400:163–168PubMedCrossRefGoogle Scholar
  47. 47.
    Otsuki Y, Tanaka M, Yoshii S et al (2001) Tumor metastasis suppressor nm23H1 regulates Rac1 GTPase by interaction with Tiam1. Proc Natl Acad Sci U S A 98:4385–4390PubMedCrossRefGoogle Scholar
  48. 48.
    Krishnan KS, Rikhy R, Rao S et al (2001) Nucleoside diphosphate kinase, a source of GTP, is required for dynamin-dependent synaptic vesicle recycling. Neuron 30:197–210PubMedCrossRefGoogle Scholar
  49. 49.
    Palacios F, Schweitzer JK, Boshans RL et al (2002) ARF6-GTP recruits NM23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936PubMedCrossRefGoogle Scholar
  50. 50.
    Rossi L, Manfredini R, Bertolini F et al (2007) The extracellular nucleotide UTP is a potent inducer of hematopoietc stem cell migration. Blood 109:533PubMedCrossRefGoogle Scholar
  51. 51.
    Okabe-Kado J, Kasukabe T, Baba H et al (1995) Inhibitory action of nm-23 proteins on induction of erythroid differentiation of human leukemia cells. Biochim Biophys Acta 1267:101–106PubMedCrossRefGoogle Scholar
  52. 52.
    Willems R, Slegers H, Rodrigus I et al (2002) Extracellular nucleoside diphosphate kinase NM23/NDPK modulates normal hematopoietic differentiation. Exp Hematol 30:640–648PubMedCrossRefGoogle Scholar
  53. 53.
    Zinyk DL, McGonnigal BG, Dearolf CR (1993) Drosophila awd K−pn, a homologue of the metastasis suppressor gene nm23, suppresses the Tum-I haematopoietic oncogene. Nat Genet 4:195–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Edith Horn Postel
    • 1
  • Xiaoming Zou
    • 2
  • Daniel A. Notterman
    • 3
  • Krista M. D. La Perle
    • 4
    • 5
  1. 1.Laboratory of Biochemistry and Molecular Biology, Department of PediatricsRobert Wood Johnson Medical School/UMDNJNew BrunswickUSA
  2. 2.AMGEN Inc.Thousand OaksUSA
  3. 3.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  4. 4.Genetically Engineered Mouse Phenotyping ServiceMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  5. 5.Department of Veterinary Biosciences, Comparative Pathology Program & Mouse Phenotyping Shared ResourceThe Ohio State UniversityColumbusUSA

Personalised recommendations