Molecular and Cellular Biochemistry

, Volume 330, Issue 1–2, pp 105–120 | Cite as

Disorder-to-order conformational transitions in protein structure and its relationship to disease

  • Paola Mendoza-Espinosa
  • Victor García-González
  • Abel Moreno
  • Rolando Castillo
  • Jaime Mas-Oliva


Function in proteins largely depends on the acquisition of specific structures through folding at physiological time scales. Under both equilibrium and non-equilibrium states, proteins develop partially structured molecules that being intermediates in the process, usually resemble the structure of the fully folded protein. These intermediates, known as molten globules, present the faculty of adopting a large variety of conformations mainly supported by changes in their side chains. Taking into account that the mechanism to obtain a fully packed structure is considered more difficult energetically than forming partially “disordered” folding intermediates, evolution might have conferred upon an important number of proteins the capability to first partially fold and—depending on the presence of specific partner ligands—switch on disorder-to-order transitions to adopt a highly ordered well-folded state and reach the lowest energy conformation possible. Disorder in this context can represent segments of proteins or complete proteins that might exist in the native state. Moreover, because this type of disorder-to-order transition in proteins has been found to be reversible, it has been frequently associated with important signaling events in the cell. Due to the central role of this phenomenon in cell biology, protein misfolding and aberrant disorder-to-order transitions have been at present associated with an important number of diseases.


Protein structure Protein misfolding Disorder-to-order transitions Disease 



Research described in this article carried out during the last few years in the laboratory of JM-O has been supported by Consejo Nacional de Ciencia y Tecnología, México (CONACyT-México) grant 47333/A-1 and by Universidad Nacional Autónoma de México (DGAPA-UNAM) grant IN228607. We want to thank Blanca Delgado-Coello for her technical help and Jorge Bravo-Martínez for his work in visualization and structure analysis, Mrs. Margaret Brunner for editorial services and Ma. Elena Gutierrez for manuscript preparation.


  1. 1.
    Beretta L (2007) Proteomics from the clinical perspective: many hopes and much debate. Nat Methods 4:785–786. doi: 10.1038/nmeth1007-785 PubMedCrossRefGoogle Scholar
  2. 2.
    Rose GD, Fleming PJ, Banavar JR, Maritan A (2006) A backbone-based theory of protein folding. Proc Natl Acad Sci USA 103:16623–16633. doi: 10.1073/pnas.0606843103 PubMedCrossRefGoogle Scholar
  3. 3.
    Eaton WA, Muñoz V, Hagen SJ, Jas GS, Lapidus LJ, Henry ER (2000) Fast kinetics and mechanisms in protein folding. Annu Rev Biophys Biomol Struct 29:327–359. doi: 10.1146/annurev.biophys.29.1.327 PubMedCrossRefGoogle Scholar
  4. 4.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331. doi: 10.1016/S0092-8674(00)81871-1 PubMedCrossRefGoogle Scholar
  5. 5.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310. doi: 10.1038/35042675 PubMedCrossRefGoogle Scholar
  6. 6.
    Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci USA 102:10427–10432. doi: 10.1073/pnas.0502066102 PubMedCrossRefGoogle Scholar
  7. 7.
    Frenette PS, Atweh GF (2007) Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest 117:850–858. doi: 10.1172/JCI30920 PubMedCrossRefGoogle Scholar
  8. 8.
    Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265. doi: 10.1126/science.1105850 PubMedCrossRefGoogle Scholar
  9. 9.
    Yull HM, Ritchie DL, Langeveld JP, van Zijderveld FG, Bruce ME, Ironside JW, Head MW (2006) Detection of type 1 prion protein in variant Creutzfeldt–Jakob disease. Am J Pathol 168:151–157. doi: 10.2353/ajpath.2006.050766 PubMedCrossRefGoogle Scholar
  10. 10.
    Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904. doi: 10.1038/nature02264 PubMedCrossRefGoogle Scholar
  11. 11.
    Hoenig M, Hall G, Ferguson D, Jordan K, Henson M, Johnson K, O’Brien T (2000) A feline model of experimentally induced islet amyloidosis. Am J Pathol 157:2143–2150PubMedGoogle Scholar
  12. 12.
    Huang K (2005) Lectures on statistical physics and protein folding. World Scientific, New JerseyGoogle Scholar
  13. 13.
    Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890. doi: 10.1038/nature02261 PubMedCrossRefGoogle Scholar
  14. 14.
    Gsponer J, Vendruscolo M (2006) Theoretical approaches to protein aggregation. Protein Pept Lett 13:287–293. doi: 10.2174/092986606775338407 PubMedCrossRefGoogle Scholar
  15. 15.
    Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332. doi: 10.1016/S0968-0004(99)01445-0 PubMedCrossRefGoogle Scholar
  16. 16.
    Eisenberg D, Nelson R, Sawaya MR, Balbirnie M, Sambashivan S, Ivanova MI, Madsen AO, Riekel C (2006) The structural biology of protein aggregation diseases: fundamental questions and some answers. Acc Chem Res 39:568–575. doi: 10.1021/ar0500618 PubMedCrossRefGoogle Scholar
  17. 17.
    Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23. doi: 10.1016/S1359-0278(98)00002-9 PubMedCrossRefGoogle Scholar
  18. 18.
    Chandra S, Chen X, Rizo J, Jahn R, Südhof TC (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278:15313–15318. doi: 10.1074/jbc.M213128200 PubMedCrossRefGoogle Scholar
  19. 19.
    Dobson MC (2004) Protein chemistry: in the footsteps of alchemists. Science 304:1259–1262. doi: 10.1126/science.1093078 PubMedCrossRefGoogle Scholar
  20. 20.
    Ohnishi S, Takano K (2004) Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci 61:511–524. doi: 10.1007/s00018-003-3264-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Chen S, Ferrone FA, Wetzel R (2002) Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc Natl Acad Sci USA 99:11884–11889. doi: 10.1073/pnas.182276099 PubMedCrossRefGoogle Scholar
  22. 22.
    Wang X, Vitalis A, Wyczalkowski MA, Pappu RV (2006) Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 63:297–311. doi: 10.1002/prot.20761 PubMedCrossRefGoogle Scholar
  23. 23.
    Bode W, Huber R (1976) Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett 68:231–236. doi: 10.1016/0014-5793(76)80443-7 PubMedCrossRefGoogle Scholar
  24. 24.
    Huber R, Bode W (1978) Structural basis of the activation and action of trypsin. Acc Chem Res 11:114–122. doi: 10.1021/ar50123a006 CrossRefGoogle Scholar
  25. 25.
    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic ZJ (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59. doi: 10.1016/S1093-3263(00)00138-8 PubMedCrossRefGoogle Scholar
  26. 26.
    Dunker AK, Obradovic Z (2001) The protein trinity-linking function and disorder. Nat Biotechnol 19:805–806. doi: 10.1038/nbt0901-805 PubMedCrossRefGoogle Scholar
  27. 27.
    Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756. doi: 10.1110/ps.4210102 PubMedCrossRefGoogle Scholar
  28. 28.
    Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533. doi: 10.1016/S0968-0004(02)02169-2 PubMedCrossRefGoogle Scholar
  29. 29.
    James C, Tawfik DS (2003) Conformational diversity and protein evolution—a 60-year-old hypothesis revisited. Trends Biochem Sci 28:361–368. doi: 10.1016/S0968-0004(03)00135-X PubMedCrossRefGoogle Scholar
  30. 30.
    Bustos DM, Iglesias AA (2006) Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 63:35–42. doi: 10.1002/prot.20888 PubMedCrossRefGoogle Scholar
  31. 31.
    Kriwacki RW, Hengst L, Tennant L, Reed SI, Wright PE (1996) Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity. Proc Natl Acad Sci USA 93:11504–11509. doi: 10.1073/pnas.93.21.11504 PubMedCrossRefGoogle Scholar
  32. 32.
    Dalal S, Regan L (2000) Understanding the sequence determinants of conformational switching using protein design. Protein Sci 9:1651–1659. doi: 10.1110/ps.9.9.1651 PubMedCrossRefGoogle Scholar
  33. 33.
    Pagel K, Vagt T, Koksch B (2005) Directing the secondary structure of polypeptides at will: from helices to amyloids and back again? Org Biomol Chem 3:3843–3850. doi: 10.1039/b510098d PubMedCrossRefGoogle Scholar
  34. 34.
    Polverini E, Fasano A, Zito F, Riccio P, Cavatorta P (1999) Conformation of bovine myelin basic protein purified with bound lipids. Eur Biophys J 28:351–355. doi: 10.1007/s002490050218 PubMedCrossRefGoogle Scholar
  35. 35.
    Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 473–484Google Scholar
  36. 36.
    Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tatos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793. doi: 10.1093/nar/gkl893 PubMedCrossRefGoogle Scholar
  37. 37.
    Cortese MS, Uversky VN, Dunker AK (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98:85–106. doi: 10.1016/j.pbiomolbio.2008.05.007 PubMedCrossRefGoogle Scholar
  38. 38.
    Su C-T, Chen C-Y, Hsu C-M (2007) iPDA: integrated protein disorder analyzer. Nucleic Acids Res 35:W465–W472. doi: 10.1093/nar/gkm080 PubMedCrossRefGoogle Scholar
  39. 39.
    Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65. doi: 10.1186/1471-2105-8-65 PubMedCrossRefGoogle Scholar
  40. 40.
    Romero PZ, Obradovic C, Dunker AK (2001) Intelligent data analysis for protein disorder prediction. Artif Intell Rev 14:447–484. doi: 10.1023/A:1006678623815 CrossRefGoogle Scholar
  41. 41.
    Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12. doi: 10.1046/j.0014-2956.2001.02649.x PubMedCrossRefGoogle Scholar
  42. 42.
    Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24:435–442. doi: 10.1016/j.tibtech.2006.07.005 PubMedCrossRefGoogle Scholar
  43. 43.
    Xie Q, Arnold GE, Romero P, Obradovic Z, Garner E, Dunker AK (1998) The sequence attribute method for determining relationships between sequence and protein disorder. Genome Inform Ser Workshop Genome Inform 9:193–200PubMedGoogle Scholar
  44. 44.
    Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48. doi: 10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  45. 45.
    Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582. doi: 10.1021/bi012159+ PubMedCrossRefGoogle Scholar
  46. 46.
    Held W, Clevers H, Grosschedl R (2003) Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur J Immunol 33:1393–1398. doi: 10.1002/eji.200323840 PubMedCrossRefGoogle Scholar
  47. 47.
    Love JJ, Li X, Chung J, Dyson HJ, Wright PE (2004) The LEF-1 high-mobility group domain undergoes a disorder-to-order transition upon formation of a complex with cognate DNA. Biochemistry 43:8725–8734. doi: 10.1021/bi049591m PubMedCrossRefGoogle Scholar
  48. 48.
    Birch JM, Hartley AL, Tricker KJ, Prosser J, Condie A, Kelsey AM, Harris M, Jones PH, Binchy A, Crowther D, Craft AW, Edem PB, Evans DGR, Thompson E, Mann JR, Martin J, Mithel ELD, Santibáñez-Koref F (1994) Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 54:1298–1304PubMedGoogle Scholar
  49. 49.
    Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P, Eeles RA (2003) Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63:6643–6650PubMedGoogle Scholar
  50. 50.
    Martin AC, Facchiano AM, Cuff AL, Hernandez-Boussard T, Olivier M, Hainaut P, Thornton JM (2002) Integrating mutation data and structural analysis of the TP53 tumor-suppressor protein. Hum Mutat 19:149–164. doi: 10.1002/humu.10032 PubMedCrossRefGoogle Scholar
  51. 51.
    Ishimaru D, Lima LMTR, Naia LF, Lopez PM, Bom APA, Valente AP, Silva JL (2004) Reversible aggregation plays a crucial role on the folding landscape of p53 core domain. Biophys J 87:2691–2700. doi: 10.1529/biophysj.104.044685 PubMedCrossRefGoogle Scholar
  52. 52.
    Ivanyi-Nagy R, Davidovic L, Khandjian EW, Darlix JL (2005) Disordered RNA chaperone proteins: from functions to disease. Cell Mol Life Sci 62:1409–1417. doi: 10.1007/s00018-005-5100-9 PubMedCrossRefGoogle Scholar
  53. 53.
    Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175. doi: 10.1096/fj.04-1584rev PubMedCrossRefGoogle Scholar
  54. 54.
    Mély Y, De Rocquigny H, Morellet N, Roques BP, Gerad D (1996) Zinc binding to the HIV-1 nucleocapsid protein: a thermodynamic investigation by fluorescence spectroscopy. Biochemistry 35:5175–5182. doi: 10.1021/bi952587d PubMedCrossRefGoogle Scholar
  55. 55.
    South TL, Blake PR, Sowder RC 3rd, Arthur LO, Henderson LE, Summers MF (1990) The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers. Biochemistry 29:7786–7789. doi: 10.1021/bi00486a002 PubMedCrossRefGoogle Scholar
  56. 56.
    Carteau S, Gorelick RJ, Bushman FD (1999) Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J Virol 73:6670–6679PubMedGoogle Scholar
  57. 57.
    Cristofari G, Darlix JL (2002) The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 72:223–268. doi: 10.1016/S0079-6603(02)72071-0 PubMedCrossRefGoogle Scholar
  58. 58.
    Tsuchihashi Z, Brown PO (1994) DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 68:5863–5870PubMedGoogle Scholar
  59. 59.
    Hargittai MR, Gorelick RJ, Rouzina I, Musier-Forsyth K (2004) Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. J Mol Biol 337:951–968. doi: 10.1016/j.jmb.2004.01.054 PubMedCrossRefGoogle Scholar
  60. 60.
    Urbaneja MA, Wu M, Casas-Finet JR, Karpel RL (2002) HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity. J Mol Biol 318:749–764. doi: 10.1016/S0022-2836(02)00043-8 PubMedCrossRefGoogle Scholar
  61. 61.
    Williams MC, Rouzina I, Wenner JR, Gorelick RJ, Musier-Forsyth K, Bloomfield VA (2001) Mechanism for nucleic acid chaperone activity of HIV-1 nucleocapsid protein revealed by single molecule stretching. Proc Natl Acad Sci USA 98:6121–6126. doi: 10.1073/pnas.101033198 PubMedCrossRefGoogle Scholar
  62. 62.
    Dib-Hajj F, Khan R, Giedroc DP (1993) Retroviral nucleocapsid proteins possess potent nucleic acid strand renaturation activity. Protein Sci 2:231–243PubMedGoogle Scholar
  63. 63.
    Kankia BI, Barany G, Musier-Forsyth K (2005) Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein. Nucleic Acids Res 33:4395–4403. doi: 10.1093/nar/gki741 PubMedCrossRefGoogle Scholar
  64. 64.
    Stoylov SP, Vuilleumier C, Stoylova E, De Rocquigny H, Roques BP, Gérard D, Mély Y (1997) Ordered aggregation of ribonucleic acids by the human immunodeficiency virus type 1 nucleocapsid protein. Biopolymers 41:301–312. doi: 10.1002/(SICI)1097-0282(199703)41:3<301::AID-BIP5>3.0.CO;2-W PubMedCrossRefGoogle Scholar
  65. 65.
    De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF (1998) Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279:384–388. doi: 10.1126/science.279.5349.384 PubMedCrossRefGoogle Scholar
  66. 66.
    Amarasinghe GK, De Guzman RN, Turner RB, Chancellor KJ, Wu ZR, Summers MF (2000) NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol 301:491–511. doi: 10.1006/jmbi.2000.3979 PubMedCrossRefGoogle Scholar
  67. 67.
    Amarasinghe GK, Zhou J, Miskimon M, Chancellor KJ, McDonald JA, Matthews AG, Miller RR, Rouse MD, Summers MF (2001) Stem-loop SL4 of the HIV-1 psi RNA packaging signal exhibits weak affinity for the nucleocapsid protein. Structural studies and implications for genome recognition. J Mol Biol 314:961–970. doi: 10.1006/jmbi.2000.5182 PubMedCrossRefGoogle Scholar
  68. 68.
    Tisné C, Roques BP, Dardel F (2001) Heteronuclear NMR studies of the interaction of tRNA(Lys)3 with HIV-1 nucleocapsid protein. J Mol Biol 306:443–454. doi: 10.1006/jmbi.2000.4391 PubMedCrossRefGoogle Scholar
  69. 69.
    Johnson PE, Turner RB, Wu ZR, Hairston L, Guo J, Levin JG, Summers MF (2000) A mechanism for plus-strand transfer enhancement by the HIV-1 nucleocapsid protein during reverse transcription. Biochemistry 39:9084–9091. doi: 10.1021/bi000841i PubMedCrossRefGoogle Scholar
  70. 70.
    Bourbigot S, Ramalanjaona N, Boudier C, Salgado GF, Roques BP, Mély Y, Bouaziz S, Morellet N (2008) How the HIV-1 nucleocapsid protein binds and destabilises the (−)primer binding site during reverse transcription. J Mol Biol 383:1112–1128. doi: 10.1016/j.jmb.2008.08.046 PubMedCrossRefGoogle Scholar
  71. 71.
    Xicohtencatl-Cortes J, Castillo R, Mas-Oliva J (2004) In search of new structural states of exchangeable apolipoproteins. Biochem Biophys Res Commun 324:467–470. doi: 10.1016/j.bbrc.2004.09.045 PubMedCrossRefGoogle Scholar
  72. 72.
    Bolaños-García VM, Mas-Oliva J, Ramos S, Castillo R (1999) Phase transitions in monolayers of human apolipoprotein C-I. J Phys Chem B 103:6236–6242. doi: 10.1021/jp984342r CrossRefGoogle Scholar
  73. 73.
    Bolaños-García VM, Ramos S, Xicohtencatl-Cortés J, Castillo R, Mas-Oliva J (2001) Monolayers of apolipoproteins at the air/water interface. J Phys Chem B 105:5757–5765. doi: 10.1021/jp010714b CrossRefGoogle Scholar
  74. 74.
    Mas-Oliva J, Moreno A, Ramos S, Xicohtencatl-Cortés J, Campos J, Castillo R (2003) Frontiers in cardiovascular health. In: Dhalla NS et al (eds) Monolayers of apolipoprotein AII at the air/water interface. Kluwer, Dordrecht, pp 341–352Google Scholar
  75. 75.
    Xicohtencatl-Cortes J, Mas-Oliva J, Castillo R (2004) Phase transitions of phospholipid monolayers penetrated by apolipoproteins. J Phys Chem B 108:7307–7315. doi: 10.1021/jp0369443 CrossRefGoogle Scholar
  76. 76.
    Ruíz-García J, Moreno A, Brezesinski G, Möhwald H, Mas-Oliva J, Castillo R (2003) Phase transitions, conformational changes in monolayers of human apolipoprotein CI and AII. J Phys Chem B 107:11117–11124. doi: 10.1021/jp034801a CrossRefGoogle Scholar
  77. 77.
    Campos-Terán J, Mas-Oliva J, Castillo R (2004) Interactions and conformations of α-helical human apolipoprotein CI on hydrophilic and on hydrophobic substrates. J Phys Chem B 108:20442–20450. doi: 10.1021/jp048305d CrossRefGoogle Scholar
  78. 78.
    Ramos S, Campos-Terán J, Mas-Oliva J, Nylander T, Castillo R (2008) Forces between hydrophilic surfaces adsorbed with apolipoprotein AII alpha helices. Langmuir 24:8568–8575. doi: 10.1021/la800348y PubMedCrossRefGoogle Scholar
  79. 79.
    Mendoza-Espinosa P, Moreno A, Castillo R, Mas-Oliva J (2008) Lipid dependant disorder-to-order conformational transitions in apolipoprotein CI derived peptides. Biochem Biophys Res Commun 365:8–15. doi: 10.1016/j.bbrc.2007.10.112 PubMedCrossRefGoogle Scholar
  80. 80.
    Conde-Knape K, Bensadoun A, Sobel JH, Cohn JS, Shachter NS (2002) Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase. J Lipid Res 43:2136–2145. doi: 10.1194/jlr.M200210-JLR200 PubMedCrossRefGoogle Scholar
  81. 81.
    Poensgen J (1990) Apolipoprotein C-1 inhibits the hydrolysis by phospholipase A2 of phospholipids in liposomes and cell membranes. Biochim Biophys Acta 1042:188–192PubMedGoogle Scholar
  82. 82.
    Kinnunen PK, Ehnolm C (1976) Effect of serum and C-apoproteins from very low density lipoproteins on human postheparin plasma hepatic lipase. FEBS Lett 65:354–357. doi: 10.1016/0014-5793(76)80145-7 PubMedCrossRefGoogle Scholar
  83. 83.
    Soutar AK, Garner CW, Baker HN, Sparrow JT, Jackson RL, Gotto AM, Smith LC (1975) Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase. Biochemistry 14:3057–3064. doi: 10.1021/bi00685a003 PubMedCrossRefGoogle Scholar
  84. 84.
    Gautier T, Masson D, de Barros JP, Athias A, Gambert P, Aunis D, Metz-Boutique MH, Lagrost L (2000) Human apolipoprotein C-I accounts for the ability of plasma high density lipoproteins to inhibit the cholesteryl ester transfer protein activity. J Biol Chem 275:37504–37509. doi: 10.1074/jbc.M007210200 PubMedCrossRefGoogle Scholar
  85. 85.
    Dumont L, Gautier T, de Barros JP, Laplanche H, Blache D, Ducoroy P, Fruchart J, Fruchart JC, Gambert P, Masson D, Lagrost L (2005) Molecular mechanism of the blockade of plasma cholesteryl ester transfer protein by its physiological inhibitor apolipoprotein CI. J Biol Chem 28:38108–38116. doi: 10.1074/jbc.M504678200 CrossRefGoogle Scholar
  86. 86.
    Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS (1989) Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 86:5810–5814. doi: 10.1073/pnas.86.15.5810 PubMedCrossRefGoogle Scholar
  87. 87.
    Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL (1990) Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J Biol Chem 265:10771–10779PubMedGoogle Scholar
  88. 88.
    Weisgraber KH, Mahley RW, Kowal RC, Herz J, Goldstein JL, Brown MS (1990) Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem 265:22453–22459PubMedGoogle Scholar
  89. 89.
    Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  90. 90.
    Morishima-Kawashima M, Oshima N, Ogata H, Yamaguchi H, Yoshimura M, Sugihara S, Ihara Y (2000) Effect of apolipoprotein E allele epsilon4 on the initial phase of amyloid beta-protein accumulation in the human brain. Am J Pathol 157:2093–2099PubMedGoogle Scholar
  91. 91.
    Andreola A, Bellotti V, Giorgetti S, Mangione P, Obici L, Stoppini M, Torres J, Monzani E, Merlini G, Sunde M (2003) Conformational switching and fibrillogenesis in the amyloidogenic fragment of apolipoprotein a-I. J Biol Chem 278:2444–2451. doi: 10.1074/jbc.M204801200 PubMedCrossRefGoogle Scholar
  92. 92.
    Westermark P, Mucchiano G, Marthin T, Johnson KH, Sletten K (1995) Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol 147:1186–1192PubMedGoogle Scholar
  93. 93.
    Ban T, Hoshino M, Takahashi S, Hamada D, Hasegawa K, Naike H, Goto Y (2004) Direct observation of Abeta amyloid fibril growth and inhibition. J Mol Biol 344:757–767. doi: 10.1016/j.jmb.2004.09.078 PubMedCrossRefGoogle Scholar
  94. 94.
    Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550. doi: 10.1146/annurev.neuro.24.1.519 PubMedCrossRefGoogle Scholar
  95. 95.
    Manzano-León N, Mas-Oliva J (2006) Estrés Oxidativo, Péptido β-amiloide y Enfermedad de Alzheimer. Gac Med Mex 142:229–238PubMedGoogle Scholar
  96. 96.
    Zhu X, Smith MA, Honda K, Aliev G, Moreira PI, Nunomura A, Casadesus G, Harris PL, Siedlak SL, Perry G (2007) Vascular oxidative stress in Alzheimer disease. J Neurol Sci 257:240–246. doi: 10.1016/j.jns.2007.01.039 PubMedCrossRefGoogle Scholar
  97. 97.
    Lazar KL, Miller-Auer H, Getz GS, Orgel JP, Meredith SC (2005) Helix-turn-helix peptides that form alpha-helical fibrils: turn sequences drive fibril structure. Biochemistry 44:12681–12689. doi: 10.1021/bi0509705 PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG, Roos RA, Frosch MP, Greenberg SM (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39. doi: 10.1111/j.1750-3639.2006.tb00559.x PubMedCrossRefGoogle Scholar
  99. 99.
    Cabrejo L, Chassagne P, Doucet J, Laquerrière A, Puech N, Hannequin D (2006) Sporadic cerebral amyloidotic angiopathy. Rev Neurol (Paris) 162:1059–1067. doi: 10.1016/S0035-3787(06)75118-9 Google Scholar
  100. 100.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi: 10.1016/j.cell.2006.04.014 PubMedCrossRefGoogle Scholar
  101. 101.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555. doi: 10.1126/science.292.5521.1552 PubMedCrossRefGoogle Scholar
  102. 102.
    Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32. doi: 10.1016/S0896-6273(01)00177-5 PubMedCrossRefGoogle Scholar
  103. 103.
    Gross M, Wilkins DK, Pitkeathly MC, Chung EW, Higham C, Clark A, Dobson CM (1999) Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB. Protein Sci 8:1350–1357. doi: 10.1110/ps.8.6.1350 PubMedCrossRefGoogle Scholar
  104. 104.
    Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300:541–549. doi: 10.1006/jmbi.2000.3862 PubMedCrossRefGoogle Scholar
  105. 105.
    Pertinhez TA, Bouchard M, Tomlinson EJ, Wain R, Ferguson SJ, Dobson CM, Smith LJ (2001) Amyloid fibril formation by a helical cytochrome. FEBS Lett 495:184–186. doi: 10.1016/S0014-5793(01)02384-5 PubMedCrossRefGoogle Scholar
  106. 106.
    Zurdo J, Guijarro JI, Jiménez JL, Saibil HR, Dobson CM (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J Mol Biol 311:325–340. doi: 10.1006/jmbi.2001.4858 PubMedCrossRefGoogle Scholar
  107. 107.
    Srisailam S, Kumar TK, Rajalingam D, Kathir KM, Sheu HS, Jan FJ, Chao PC, Yu C (2003) Amyloid-like fibril formation in an all beta-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. J Biol Chem 278:17701–17709. doi: 10.1074/jbc.M300336200 PubMedCrossRefGoogle Scholar
  108. 108.
    Fändrich M, Forge V, Buder K, Kittler M, Dobson CM, Diekmann S (2003) Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc Natl Acad Sci USA 100:15463–15468. doi: 10.1073/pnas.0303758100 PubMedCrossRefGoogle Scholar
  109. 109.
    Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228. doi: 10.1073/pnas.95.8.4224 PubMedCrossRefGoogle Scholar
  110. 110.
    Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid from bacteria to humans. Trends Biochem Sci 32:217–224. doi: 10.1016/j.tibs.2007.03.003 PubMedCrossRefGoogle Scholar
  111. 111.
    Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161:521–533. doi: 10.1083/jcb.200302072 PubMedCrossRefGoogle Scholar
  112. 112.
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6PubMedCrossRefGoogle Scholar
  113. 113.
    Lee ZH, Hou L, Moellmann G, Kuklinska E, Antol K, Fraser M, Halaban R, Kwon BS (1996) Characterization and subcellular localization of human Pmel 17/silver, a 110-kDa (pre)melanosomal membrane protein associated with 5,6,-dihydroxyindole-2-carboxylic acid (DHICA) converting activity. J Invest Dermatol 106:605–610. doi: 10.1111/1523-1747.ep12345163 PubMedCrossRefGoogle Scholar
  114. 114.
    Perry VH, Cunningham C, Boche D (2002) Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15:349–354. doi: 10.1097/00019052-200206000-00020 PubMedCrossRefGoogle Scholar
  115. 115.
    Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okauchi T, Staufenbiel M, Iwata N, Ono M, Saido TC, Suzuki K, Mori H, Higuchi M, Suhara T (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968. doi: 10.1523/JNEUROSCI.0673-07.2007 PubMedCrossRefGoogle Scholar
  116. 116.
    von Arnim CA, Spoelgen R, Peltan ID, Deng M, Courchesne S, Koker M, Matsui T, Kowa H, Lichtenthaler SF, Irizarry MC, Hyman BT (2006) GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 26:9913–9922. doi: 10.1523/JNEUROSCI.2290-06.2006 CrossRefGoogle Scholar
  117. 117.
    Morozova-Roche LA (2007) Equine lysozyme: the molecular basis of folding, self-assembly and innate amyloid toxicity. FEBS Lett 581:2587–2592. doi: 10.1016/j.febslet.2007.05.023 PubMedCrossRefGoogle Scholar
  118. 118.
    Wetzel R (2006) Kinetics and thermodynamics of amyloid fibril assembly. Acc Chem Res 39:671–679. doi: 10.1021/ar050069h PubMedCrossRefGoogle Scholar
  119. 119.
    Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, Kirsch WM (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76. doi: 10.1016/j.neulet.2007.02.077 PubMedCrossRefGoogle Scholar
  120. 120.
    Kuo YM, Crawford F, Mullan M, Kokjohn TA, Emmerling MR, Weller RO, Roher AE (2000) Elevated A beta and apolipoprotein E in A betaPP transgenic mice and its relationship to amyloid accumulation in Alzheimer’s disease. Mol Med 6:430–439PubMedGoogle Scholar
  121. 121.
    Matsubara E, Soto C, Governale S, Frangione B, Ghiso J (1996) Apolipoprotein J and Alzheimer’s amyloid beta solubility. Biochem J 316:671–679PubMedGoogle Scholar
  122. 122.
    Alexandrescu AT (2005) Amyloid accomplices and enforcers. Protein Sci 14:1–12. doi: 10.1110/ps.04887005 PubMedCrossRefGoogle Scholar
  123. 123.
    Lindahl B, Eriksson L, Lindhal U (1995) Structure of heparan sulfate from human brain, with special regard to Alzheimer’s disease. Biochem J 306:177–184PubMedGoogle Scholar
  124. 124.
    Mas-Oliva J, Arnold KS, Wagner WD, Phillips DR, Pitas RE, Innerarity TL (1994) Isolation and characterization of a platelet-derived macrophage-binding proteoglycan. J Biol Chem 269:10177–10183PubMedGoogle Scholar
  125. 125.
    Bussini S, Meda L, Scarpini E, Clementi E, Conti G, Tiriticco M, Bresolin N, Baron P (2005) Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. Immun Ageing 2:11. doi: 10.1186/1742-4933-2-11 PubMedCrossRefGoogle Scholar
  126. 126.
    Snow AD, Wight TN (1989) Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol Aging 10:481–497. doi: 10.1016/0197-4580(89)90108-5 PubMedCrossRefGoogle Scholar
  127. 127.
    Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD (1997) Perlecan binds to the beta-amyloid proteins (A beta) of Alzheimer’s disease, accelerates A beta fibril formation, and maintains A beta fibril stability. J Neurochem 69:2452–2465PubMedGoogle Scholar
  128. 128.
    Ancsin JB (2003) Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 10:67–79PubMedGoogle Scholar
  129. 129.
    Arrasate M, Pérez M, Valpuesta JM, Avila J (1997) Role of glycosaminoglycans in determining the helicity of paired helical filaments. Am J Pathol 151:1115–1122PubMedGoogle Scholar
  130. 130.
    Brückner G, Hausen D, Härtig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas abundant in extracellular matrix chondroitin sulfate proteoglycans are less affected by cytoskeletal changes in Alzheimer’s disease. Neuroscience 92:791–805. doi: 10.1016/S0306-4522(99)00071-8 PubMedCrossRefGoogle Scholar
  131. 131.
    Snow AD, Sekiguchi RT, Nochlin D, Kalaria RN, Kimata K (1994) Heparan sulfate proteoglycan in diffuse plaques of hippocampus but not of cerebellum in Alzheimer’s disease brain. Am J Pathol 144:337–347PubMedGoogle Scholar
  132. 132.
    Snow AD, Sekiguchi R, Nochlin D, Fraser P, Kimata K, Mizutani A, Arai M, Scherier WA, Morgan DG (1994) An important role of heparan sulfate proteoglycan (Perlecan) in a model system for the deposition and persistence of fibrillar A beta-amyloid in rat brain. Neuron 12:219–234. doi: 10.1016/0896-6273(94)90165-1 PubMedCrossRefGoogle Scholar
  133. 133.
    Kvansakul M, Hopf M, Ries A, Timpl R, Hohenester E (2001) Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J 20:5342–5346. doi: 10.1093/emboj/20.19.5342 PubMedCrossRefGoogle Scholar
  134. 134.
    Potter-Perigo S, Hull RL, Tsoi C, Braun KR, Andrikopoulos S, Teague J, Bruce Verchere C, Kahn SE, Wight TN (2003) Proteoglycans synthesized and secreted by pancreatic islet beta-cells bind amylin. Arch Biochem Biophys 413:182–190. doi: 10.1016/S0003-9861(03)00116-4 PubMedCrossRefGoogle Scholar
  135. 135.
    Castillo GM, Cummings JA, Yang W, Judge ME, Sheardown MJ, Rimvall K, Hansen JB, Snow AD (1998) Sulfate content and specific glycosaminoglycan backbone of perlecan are critical for perlecan’s enhancement of islet amyloid polypeptide (amylin) fibril formation. Diabetes 47:612–620. doi: 10.2337/diabetes.47.4.612 PubMedCrossRefGoogle Scholar
  136. 136.
    Yamamoto S, Yamaguchi I, Hasegawa K, Tsutsumi S, Goto Y, Gejyo F, Naiki H (2004) Glycosaminoglycans enhance the trifluoroethanol-induced extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. J Am Soc Nephrol 15:126–133. doi: 10.1097/01.ASN.0000103228.81623.C7 PubMedCrossRefGoogle Scholar
  137. 137.
    Suk JY, Zhang F, Balch WE, Linhardt RJ, Kelly JW (2006) Heparin accelerates gelsolin amyloidogenesis. Biochemistry 45:2234–2242. doi: 10.1021/bi0519295 PubMedCrossRefGoogle Scholar
  138. 138.
    Fraser PE, Nguyen JT, Chin DT, Kirschner DA (1992) Effects of sulfate ions on Alzheimer beta/A4 peptide assemblies: implications for amyloid fibril–proteoglycan interactions. J Neurochem 59:1531–1540. doi: 10.1111/j.1471-4159.1992.tb08470.x PubMedCrossRefGoogle Scholar
  139. 139.
    McCubbin WD, Kay CM, Narindrasorasak S, Kisilevsky R (1988) Circular-dichroism studies on two murine serum amyloid A proteins. Biochem J 256:775–783PubMedGoogle Scholar
  140. 140.
    Gupta-Bansal R, Frederickson RC, Brunden KR (1995) Proteoglycan-mediated inhibition of A beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 270:18666–18671. doi: 10.1074/jbc.270.31.18666 PubMedCrossRefGoogle Scholar
  141. 141.
    Ancsin JB, Kisilevsky R (1999) The heparin/heparan sulfate-binding site on apo-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J Biol Chem 274:7172–7181. doi: 10.1074/jbc.274.11.7172 PubMedCrossRefGoogle Scholar
  142. 142.
    Jarrett JT, Berger EP, Lansbury PT Jr (1993) The C-terminus of the beta protein is critical in amyloidogenesis. Ann N Y Acad Sci 695:144–148. doi: 10.1111/j.1749-6632.1993.tb23043.x PubMedCrossRefGoogle Scholar
  143. 143.
    Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403. doi: 10.1146/annurev.cb.10.110194.002105 PubMedCrossRefGoogle Scholar
  144. 144.
    Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079. doi: 10.1073/pnas.89.13.6075 PubMedCrossRefGoogle Scholar
  145. 145.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185. doi: 10.1126/science.1566067 PubMedCrossRefGoogle Scholar
  146. 146.
    Santiago-García J, Mas-Oliva J, Innerarity TL, Pitas RE (2001) Secreted forms of the amyloid-ß-precursor protein are ligands for the A scavenger receptor. J Biol Chem 276:30655–30661. doi: 10.1074/jbc.M102879200 PubMedCrossRefGoogle Scholar
  147. 147.
    Manzano-León N, Delgado-Coello NB, Guaderrama-Díaz M, Mas-Oliva J (2006) Beta-adaptin: key molecule for microglial scavenger receptor function under oxidative stress. Biochem Biophys Res Commun 351:588–594. doi: 10.1016/j.bbrc.2006.10.077 PubMedCrossRefGoogle Scholar
  148. 148.
    Varga J, Flinn MS, Shirahama T, Rodgers OG, Cohen AS (1986) The induction of accelerated murine amyloid with human splenic extract. Probable role of amyloid enhancing factor. Virchows Arch B Cell Pathol Incl Mol Pathol 51:177–185. doi: 10.1007/BF02899027 PubMedCrossRefGoogle Scholar
  149. 149.
    Ganowiak K, Hultman P, Engström U, Gustavsson A, Westermark P (1994) Fibrils from synthetic amyloid-related peptides enhance development of experimental AA-amyloidosis in mice. Biochem Biophys Res Commun 199:306–312. doi: 10.1006/bbrc.1994.1229 PubMedCrossRefGoogle Scholar
  150. 150.
    Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31:150–155. doi: 10.1016/j.tibs.2006.01.002 PubMedCrossRefGoogle Scholar
  151. 151.
    Prusiner SB (1997) Prion diseases and the BSE crisis. Science 278:245–251. doi: 10.1126/science.278.5336.245 PubMedCrossRefGoogle Scholar
  152. 152.
    Cohen FE, Prusiner SB (1998) Pathologic conformations of prion proteins. Annu Rev Biochem 67:793–819. doi: 10.1146/annurev.biochem.67.1.793 PubMedCrossRefGoogle Scholar
  153. 153.
    Ghetti B, Piccardo P, Frangione B, Bugiani O, Giaccone G, Young K, Prelli F, Farlow MR, Dlouhy SR, Tagliavini F (1996) Prion protein amyloidosis. Brain Pathol 6:127–145. doi: 10.1111/j.1750-3639.1996.tb00796.x PubMedCrossRefGoogle Scholar
  154. 154.
    Richardson EP, Masters CL (1995) The nosology of Creutzfeldt–Jakob disease and conditions related to the accumulation of PrPCJD in the nervous system. Brain Pathol 5:33–41. doi: 10.1111/j.1750-3639.1995.tb00575.x PubMedCrossRefGoogle Scholar
  155. 155.
    DeArmond SJ, Prusiner SB (1995) Prion protein transgenes and the neuropathology in prion diseases. Brain Pathol 5:77–89. doi: 10.1111/j.1750-3639.1995.tb00579.x PubMedCrossRefGoogle Scholar
  156. 156.
    Giaccone G, Verga L, Bugiani O, Frangione B, Serban D, Prusiner SB, Farlow MR, Ghetti B, Tagliavini F (1992) Prion protein preamyloid and amyloid deposits in Gerstmann–Sträussler–Scheinker disease, Indiana kindred. Proc Natl Acad Sci USA 89:9349–9353. doi: 10.1073/pnas.89.19.9349 PubMedCrossRefGoogle Scholar
  157. 157.
    Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62:885–898PubMedGoogle Scholar
  158. 158.
    Liao YC, Lebo RV, Clawson GA, Smuckler EA (1986) Human prion protein cDNA: molecular cloning, chromosomal mapping, and biological implications. Science 233:364–367. doi: 10.1126/science.3014653 PubMedCrossRefGoogle Scholar
  159. 159.
    Prusiner SB (1991) Molecular biology of prion diseases. Science 252:1515–1522. doi: 10.1126/science.1675487 PubMedCrossRefGoogle Scholar
  160. 160.
    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90:10962–10966. doi: 10.1073/pnas.90.23.10962 PubMedCrossRefGoogle Scholar
  161. 161.
    Gasset M, Baldwin MA, Lloyd DH, Gabriel JM, Holtzman DM, Cohen F, Fletterick R, Prusiner SB (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci USA 89:10940–10944. doi: 10.1073/pnas.89.22.10940 PubMedCrossRefGoogle Scholar
  162. 162.
    Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582. doi: 10.1038/356577a0 PubMedCrossRefGoogle Scholar
  163. 163.
    Büeler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347. doi: 10.1016/0092-8674(93)90360-3 PubMedCrossRefGoogle Scholar
  164. 164.
    Prusiner SB, McKinley MP, Bowman KA, Bolton DC, Bendheim PE, Groth DF, Glenner GG (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35:349–358. doi: 10.1016/0092-8674(83)90168-X PubMedCrossRefGoogle Scholar
  165. 165.
    DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41:221–235. doi: 10.1016/0092-8674(85)90076-5 PubMedCrossRefGoogle Scholar
  166. 166.
    Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526. doi: 10.1126/science.1151839 PubMedCrossRefGoogle Scholar
  167. 167.
    Hou X, Aguilar MI, Small DH (2007) Transthyretin and familial amyloidotic polyneuropathy. Recent progress in understanding the molecular mechanism of neurodegeneration. FEBS J 274:1637–1650. doi: 10.1111/j.1742-4658.2007.05712.x PubMedCrossRefGoogle Scholar
  168. 168.
    Costa PP, Figueira AS, Bravo FR (1978) Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci USA 75:4499–4503. doi: 10.1073/pnas.75.9.4499 PubMedCrossRefGoogle Scholar
  169. 169.
    Sousa MM, Cardoso I, Fernandez R, Guimäraes A, Saraiva MJ (2001) Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol 159:1993–2000PubMedGoogle Scholar
  170. 170.
    Monaco HL (2002) Three-dimensional structure of the transthyretin-retinol-binding protein complex. Clin Chem Lab Med 40:1229–1236. doi: 10.1515/CCLM.2002.213 PubMedCrossRefGoogle Scholar
  171. 171.
    Redondo C, Damas AM, Saraiva MJ (2000) Designing transthyretin mutants affecting tetrameric structure: implications in amyloidogenicity. Biochem J 348:167–172. doi: 10.1042/0264-6021:3480167 PubMedCrossRefGoogle Scholar
  172. 172.
    Jacobson DR, Pastore RD, Yaghoubian R, Kane I, Gallo G, Buck FS, Buxbaum JN (1997) Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med 336:466–473. doi: 10.1056/NEJM199702133360703 PubMedCrossRefGoogle Scholar
  173. 173.
    Buxbaum JN, Tagoe CE (2000) The genetics of the amyloidoses. Annu Rev Med 51:543–569. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  174. 174.
    Kelly JW, Colon W, Lai Z, Lashuel HA, McCulloch J, McCutchen SL, Miroy GJ, Peterson SA (1997) Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. Adv Protein Chem 50:161–181. doi: 10.1016/S0065-3233(08)60321-6 PubMedCrossRefGoogle Scholar
  175. 175.
    Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106. doi: 10.1016/S0959-440X(98)80016-X PubMedCrossRefGoogle Scholar
  176. 176.
    Reixach N, Deechongkit S, Jian X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822. doi: 10.1073/pnas.0400062101 PubMedCrossRefGoogle Scholar
  177. 177.
    Kelly JW (1997) Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure 5:595–600. doi: 10.1016/S0969-2126(97)00215-3 PubMedCrossRefGoogle Scholar
  178. 178.
    Nichols WC, Dwulet FE, Liepnieks J, Benson MD (1988) Variant apolipoprotein AI as a major constituent of a human hereditary amyloid. Biochem Biophys Res Commun 156:762–768. doi: 10.1016/S0006-291X(88)80909-4 PubMedCrossRefGoogle Scholar
  179. 179.
    Gorevic PD, Munoz PC, Gorgone G, Purcell JJ Jr, Rodrigues M, Ghiso J, Levy E, Haltia M, Frangione B (1991) Amyloidosis due to a mutation of the gelsolin gene in an American family with lattice corneal dystrophy type II. N Engl J Med 325:1780–1785PubMedCrossRefGoogle Scholar
  180. 180.
    Levy E, Haltia M, Fernandez-Madrid I, Koivunen O, Ghiso J, Prelli F, Frangione B (1990) Mutation in gelsolin gene in Finnish hereditary amyloidosis. J Exp Med 172:1865–1867. doi: 10.1084/jem.172.6.1865 PubMedCrossRefGoogle Scholar
  181. 181.
    de la Chapelle A, Tolvanen R, Boysen G, Santavy J, Bleeker-Wagemakers L, Maury CP, Kere J (1992) Gelsolin-derived familial amyloidosis caused by asparagine or tyrosine substitution for aspartic acid at residue 187. Nat Genet 2:157–160. doi: 10.1038/ng1092-157 PubMedCrossRefGoogle Scholar
  182. 182.
    Wisniewski T, Golabek A, Kida E, Wisniewski K, Frangione B (1995) Conformational mimicry in Alzheimer’s disease. Role of apolipoproteins in amyloidogenesis. Am J Pathol 147:238–244PubMedGoogle Scholar
  183. 183.
    Maury CP, Kere J, Tolvanen R, de la Chapelle A (1990) Finnish hereditary amyloidosis is caused by a single nucleotide substitution in the gelsolin gene. FEBS Lett 276:75–77. doi: 10.1016/0014-5793(90)80510-P PubMedCrossRefGoogle Scholar
  184. 184.
    Kiuru S (1998) Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid 5:55–66PubMedGoogle Scholar
  185. 185.
    Chen CD, Huff ME, Matteson J, Page L, Phillips R, Kelly JW, Balch WE (2001) Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca2+ stabilization. EMBO J 20:6277–6287. doi: 10.1093/emboj/20.22.6277 PubMedCrossRefGoogle Scholar
  186. 186.
    Page LJ, Suk JY, Huff ME, Lim HJ, Venable J, Yates J, Kelly JW, Balch WE (2005) Metalloendoprotease cleavage triggers gelsolin amyloidogenesis. EMBO J 24:4124–4132. doi: 10.1038/sj.emboj.7600872 PubMedCrossRefGoogle Scholar
  187. 187.
    Bhattacharya S, Latha JN, Kumresan R, Shashi S (2007) Cloning and expression of human islet amyloid polypeptide in cultured cells. Biochem Biophys Res Commun 365:8–15Google Scholar
  188. 188.
    Westermark P (1994) Amyloid and polypeptide hormones: what is their inter-relationship? Amyloid 1:47–60. doi: 10.3109/13506129409148624 CrossRefGoogle Scholar
  189. 189.
    Koopmans SJ, Radder JK, Krans HM, Barge RM (1992) Biological action of pancreatic amylin: relationship with glucose metabolism, diabetes, obesity and calcium metabolism. Neth J Med 41:82–90PubMedGoogle Scholar
  190. 190.
    Cooper GJ, Day AJ, Willis AC, Roberts AN, Reid KB, Leighton B (1989) Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta 1014:247–258. doi: 10.1016/0167-4889(89)90220-6 PubMedCrossRefGoogle Scholar
  191. 191.
    Edwards BJ, Morley JE (1992) Amylin. Life Sci 51:1899–1912. doi: 10.1016/0024-3205(92)90106-Y PubMedCrossRefGoogle Scholar
  192. 192.
    Nilsson MR, Raleigh DP (1999) Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. J Mol Biol 294:1375–1385. doi: 10.1006/jmbi.1999.3286 PubMedCrossRefGoogle Scholar
  193. 193.
    Anguiano M, Nowak RJ, Lansbury PT (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343. doi: 10.1021/bi020314u PubMedCrossRefGoogle Scholar
  194. 194.
    Westermark P, Wernstedt C, Wilander E, Hayden DW, O’Brien TD, Johnson KH (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc Natl Acad Sci USA 84:3881–3885. doi: 10.1073/pnas.84.11.3881 PubMedCrossRefGoogle Scholar
  195. 195.
    Rosano C, Zuccotti S, Bolognesi M (2005) The three-dimensional structure of β2 microglobulin: results from X ray crystallography. Biochim Biophys Acta 1753:85–91PubMedGoogle Scholar
  196. 196.
    Floege J, Ehlerding G (1996) Beta-2-microglobulin associated amyloidosis. Nephron 72:9–26. doi: 10.1159/000188801 PubMedCrossRefGoogle Scholar
  197. 197.
    Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kunitomo T, Kataoka H, Suzuki M, Hirasawa Y, Shirahama T, Cohen AS, Schmid K (1985) A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem Biophys Res Commun 129:701–706. doi: 10.1016/0006-291X(85)91948-5 PubMedCrossRefGoogle Scholar
  198. 198.
    Gouin-Charnet A, Mourad G, Argilés A (1997) Alpha 2-macroglobulin protects some of the protein constituents of dialysis-associated amyloidosis from protease degradation. Biochem Biophys Res Commun 231:48–51. doi: 10.1006/bbrc.1996.6019 PubMedCrossRefGoogle Scholar
  199. 199.
    Trinh CH, Smith DP, Kalverda AP, Philips SE, Radford S (1991) Crystal structure of monomeric human β-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci USA 99:9771–9776. doi: 10.1073/pnas.152337399 CrossRefGoogle Scholar
  200. 200.
    McParland VJ, Kad NM, Kalverda AP, Brown A, Kirwin-Jones P, Hunter MG, Sunde M, Radford SE (2000) Partially unfolded states of beta(2)-microglobulin amyloid formation in vitro. Biochemistry 39:8735–8746. doi: 10.1021/bi000276j PubMedCrossRefGoogle Scholar
  201. 201.
    Ohhashi Y, Hagihara Y, Kozhukh G, Hoshino M, Hasegawa K, Yamaguchi I, Naiki H, Goto Y (2002) The intrachain disulfide bond of beta(2)-microglobulin is not essential for the immunoglobulin fold at neutral pH, but is essential for amyloid fibril formation at acidic pH. J Biochem 131:45–52PubMedGoogle Scholar
  202. 202.
    Gribbin JR (2004) Deep simplicity: bringing order to chaos and complexity. Random House Inc., New York, pp 1–304Google Scholar
  203. 203.
    Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. doi: 10.1126/science.1067484 PubMedCrossRefGoogle Scholar
  204. 204.
    Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726. doi: 10.1101/gad.264303 PubMedCrossRefGoogle Scholar
  205. 205.
    Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp RG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91. doi: 10.1016/S0969-2126(00)00559-1 PubMedCrossRefGoogle Scholar
  206. 206.
    Coustou V, Deleu C, Saupe S, Begueret J (1997) The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 94:9773–9778. doi: 10.1073/pnas.94.18.9773 PubMedCrossRefGoogle Scholar
  207. 207.
    King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wüthrich K (1997) Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA 94:6618–6622. doi: 10.1073/pnas.94.13.6618 PubMedCrossRefGoogle Scholar
  208. 208.
    Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479:141–145. doi: 10.1016/S0014-5793(00)01888-3 PubMedCrossRefGoogle Scholar
  209. 209.
    Iconomidou VA, Chryssikos GD, Gionis V, Galanis AS, Cordopatis P, Hoenger A, Hamodrakas SJ (2006) Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. J Struct Biol 156:480–488. doi: 10.1016/j.jsb.2006.08.011 PubMedCrossRefGoogle Scholar
  210. 210.
    Kobayashi T, Urabe K, Orlow SJ, Higashi K, Imokawa G, Kwon BS, Potterf B, Hearing VJ (1994) The Pmel 17/silver locus protein. Characterization and investigation of its melanogenic function. J Biol Chem 269:29198–29205PubMedGoogle Scholar
  211. 211.
    Kelly JW, Balch WE (2003) Amyloid as a natural product. J Cell Biol 161:461–462. doi: 10.1083/jcb.200304074 PubMedCrossRefGoogle Scholar
  212. 212.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, Palo Alto.

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Paola Mendoza-Espinosa
    • 1
  • Victor García-González
    • 1
  • Abel Moreno
    • 2
  • Rolando Castillo
    • 3
  • Jaime Mas-Oliva
    • 1
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Instituto de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations