Molecular and Cellular Biochemistry

, Volume 328, Issue 1–2, pp 177–182

Changes in gene expression of kringle domain-containing proteins in murine brains and neuroblastoma cells infected by prions

  • Younghwan Kim
  • Jihyun Song
  • Charles E. Mays
  • William Titlow
  • Donghoon Yoon
  • Chongsuk Ryou
Article

Abstract

Prion protein (PrP) interacts with some kringle domain-containing proteins. Kringle domains serve as binding domains in the interaction with PrP. The structural conservation among kringle domains leads to the hypothesis that any protein containing these domains can interact with PrP and be involved in prion pathogenesis. Because prion pathogenesis occurs in the brain, kringle domain-containing proteins should be available in the same tissue if they are relevant to prion pathogenesis. However, gene expression of these proteins in brains infected by prions has not been examined. Here, we showed that plasminogen (plg), urokinase type plasminogen activator (upa), tissue type plasminogen activator (tpa), prothrombin (prothr), and hepatocyte growth factor (hgf) genes were expressed in murine brains and neuroblastoma cells. The changes in upa, prothr, and hgf gene expression correlated with prion disease, but those in plg and tpa gene expression did not. Our data suggest association of gene expression of kringle domain-containing proteins in brains with prion disease.

Keywords

Prion disease Gene expression Plasminogen Plasminogen activators Prothrombin Hepatocyte growth factor 

Supplementary material

11010_2009_87_MOESM1_ESM.tif (41.8 mb)
(TIFF 42758 kb)Fig. S1. Changes of ΔCT in gene expression of kringle domain-containing proteins in prion-infected and -free mouse brains. The data were presented in terms of ΔCT (the difference of CT). Differential expression was measured by subtracting CT values of actin control from those of kringle domain-containing protein genes. The P values were obtained by Student’s t-test. The asterisk denotes P < 0.05

References

  1. 1.
    Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383. doi:10.1073/pnas.95.23.13363 PubMedCrossRefGoogle Scholar
  2. 2.
    Ryou C (2007) Prions and prion diseases: fundamentals and mechanistic details. J Microbiol Biotechnol 17:1059–1070PubMedGoogle Scholar
  3. 3.
    Castellino FJ, Ploplis VA (2003) Human plasminogen: structure, activation, and function. In: Waisman DM (ed) Plasminogen: structure, activation, and regulation. Kluwer Academic/Plenum Publishers, New York, pp 3–17Google Scholar
  4. 4.
    Gherardi E, Gonzalez-Manzano R, Cottage A et al (1997) Evolution of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Ciba Found Symp 212:24–35 (discussion 35–41, 42–45)PubMedGoogle Scholar
  5. 5.
    Castellino FJ, Beals JM (1987) The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII. J Mol Evol 26:358–369. doi:10.1007/BF02101155 PubMedCrossRefGoogle Scholar
  6. 6.
    Fischer MB, Roeckl C, Parizek P et al (2000) Binding of disease-associated prion protein to plasminogen. Nature 408:479–483. doi:10.1038/35044100 PubMedCrossRefGoogle Scholar
  7. 7.
    Maissen M, Roeckl C, Glatzel M et al (2001) Plasminogen binds to disease-associated prion protein of multiple species. Lancet 357:2026–2028. doi:10.1016/S0140-6736(00)05110-2 PubMedCrossRefGoogle Scholar
  8. 8.
    Ellis V, Daniels M, Misra R et al (2002) Plasminogen activation is stimulated by prion protein and regulated in a copper-dependent manner. Biochemistry 41:6891–6896. doi:10.1021/bi025676g PubMedCrossRefGoogle Scholar
  9. 9.
    Kornblatt JA, Marchal S, Rezaei H et al (2003) The fate of the prion protein in the prion/plasminogen complex. Biochem Biophys Res Commun 305:518–522. doi:10.1016/S0006-291X(03)00804-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Kornblatt JA, Marchal S, Razaei H et al (2004) Characterization of a complex formed between human plasminogen and recombinant sheep prion: pressure and thermal sensitivity of complex formation. Cell Mol Biol Noisy-le-grand 50:387–396PubMedGoogle Scholar
  11. 11.
    Cuccioloni M, Amici M, Eleuteri AM et al (2005) Binding of recombinant PrPc to human plasminogen: kinetic and thermodynamic study using a resonant mirror biosensor. Proteins 58:728–734. doi:10.1002/prot.20346 PubMedCrossRefGoogle Scholar
  12. 12.
    Shaked Y, Engelstein R, Gabizon R (2002) The binding of prion proteins to serum components is affected by detergent extraction conditions. J Neurochem 82:1–5. doi:10.1046/j.1471-4159.2002.00995.x PubMedCrossRefGoogle Scholar
  13. 13.
    Ryou C, Prusiner SB, Legname G (2003) Cooperative binding of dominant-negative prion protein to kringle domains. J Mol Biol 329:323–333. doi:10.1016/S0022-2836(03)00342-5 PubMedCrossRefGoogle Scholar
  14. 14.
    Praus M, Kettelgerdes G, Baier M et al (2003) Stimulation of plasminogen activation by recombinant cellular prion protein is conserved in the NH2-terminal fragment PrP23-110. Thromb Haemost 89:812–819PubMedGoogle Scholar
  15. 15.
    Epple G, Langfeld K, Baier M et al (2004) Both lysine-clusters of the NH2-terminal prion-protein fragment PrP23-110 are essential for t-PA mediated plasminogen activation. Thromb Haemost 91:465–471PubMedGoogle Scholar
  16. 16.
    Epple G, Schleuning W-D, Kettelgerdes G et al (2004) Prion protein stimulates tissue-type plasminogen activator-mediated plasmin generation via a lysine-binding site on kringle 2. J Thromb Haemost 2:962–968. doi:10.1111/j.1538-7836.2004.00675.x PubMedCrossRefGoogle Scholar
  17. 17.
    Davies BJ, Pickard BS, Steel M et al (1998) Serine proteases in rodent hippocampus. J Biol Chem 273:23004–23011. doi:10.1074/jbc.273.36.23004 PubMedCrossRefGoogle Scholar
  18. 18.
    Thewke DP, Seeds NW (1999) The expression of mRNAs for hepatocyte growth factor/scatter factor, its receptor c-met, and one of its activators tissue-type plasminogen activator show a systematic relationship in the developing and adult cerebral cortex and hippocampus. Brain Res 821:356–367. doi:10.1016/S0006-8993(99)01115-4 PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang L, Seiffert D, Fowler BJ et al (2002) Plasminogen has a broad extrahepatic distribution. Thromb Haemost 87:493–501PubMedGoogle Scholar
  20. 20.
    Lawn RM, Wade DP, Hammer RE et al (1992) Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 360:670–672. doi:10.1038/360670a0 PubMedCrossRefGoogle Scholar
  21. 21.
    Deininger MH, Trautmann K, Magdolen V et al (2002) Cortical neurons of Creutzfeldt-Jakob disease patients express the urokinase-type plasminogen activator receptor. Neurosci Lett 324:80–82. doi:10.1016/S0304-3940(02)00168-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Klebe RJ, Ruddle FH (1969) Neuroblastoma: cell culture analysis of a differentiating stem cell system. J Cell Biol 43:69aGoogle Scholar
  23. 23.
    Butler DA, Scott MRD, Bockman JM et al (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62:1558–1564PubMedGoogle Scholar
  24. 24.
    Ryou C, Legname G, Peretz D et al (2003) Differential inhibition of prion propagation by enantiomers of quinacrine. Lab Invest 83:837–843PubMedGoogle Scholar
  25. 25.
    Prusiner SB, Cochran SP, Alpers MP (1985) Transmission of scrapie in hamsters. J Infect Dis 152:971–978PubMedGoogle Scholar
  26. 26.
    Yoon D, Pastore YD, Divoky V et al (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281:25703–25711. doi:10.1074/jbc.M602329200 PubMedCrossRefGoogle Scholar
  27. 27.
    Telling GC, Scott M, Mastrianni J et al (1995) Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83:79–90. doi:10.1016/0092-8674(95)90236-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Sitrin RG, Johnson DR, Pan PM et al (2004) Lipid raft compartmentalization of urokinase receptor signaling in human neutrophils. Am J Respir Cell Mol Biol 30:233–241. doi:10.1165/rcmb.2003-0079OC PubMedCrossRefGoogle Scholar
  29. 29.
    Baglia FA, Shrimpton CN, Lopez JA et al (2003) The glycoprotein Ib-IX-V complex mediates localization of factor XI to lipid rafts on the platelet membrane. J Biol Chem 278:21744–21750. doi:10.1074/jbc.M212991200 PubMedCrossRefGoogle Scholar
  30. 30.
    Ledesma MD, Da Silva JS, Schevchenko A et al (2003) Proteomic characterisation of neuronal sphingolipid-cholesterol microdomains: role in plasminogen activation. Brain Res 987:107–116. doi:10.1016/S0006-8993(03)03296-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Zerr I, Bodemer M, Kaboth U et al (2004) Plasminogen activities and concentrations in patients with sporadic Creutzfeldt-Jakob disease. Neurosci Lett 371:163–166. doi:10.1016/j.neulet.2004.08.063 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Younghwan Kim
    • 1
  • Jihyun Song
    • 2
  • Charles E. Mays
    • 1
  • William Titlow
    • 1
  • Donghoon Yoon
    • 2
  • Chongsuk Ryou
    • 1
  1. 1.Department of Microbiology, Immunology & Molecular Genetics, Sanders Brown Center on AgingUniversity of Kentucky College of MedicineLexingtonUSA
  2. 2.Department of Medicine, Hematology DivisionUniversity of UtahSalt Lake CityUSA

Personalised recommendations