Molecular and Cellular Biochemistry

, Volume 327, Issue 1–2, pp 53–63 | Cite as

Novel protein RGPR-p117: its role as the regucalcin gene transcription factor

  • Masayoshi YamaguchiEmail author


RGPR-p117 was originally discovered as a novel protein that binds to a nuclear factor I (NFI) consensus motif TTGGC(N)6CC, which is present in the 5′-flanking region of the regucalcin gene (rgn). RGPR-p117 has been identified in human, rat, mouse, bovine, rabbit, and chicken livers. Phylogenetic analysis of six vertebrates shows that RGPR-p117 appears to form a single cluster, indicating a common evolutionary relationship of the RGPR-p117 family. The RGPR-p117 gene consists of at least 26 exons spanning approximately 4.1 kbp and is localized on human chromosome 1q25.2. RGPR-p117 mRNA is expressed in the liver, kidney, heart, spleen, and brain of rats. RGPR-p117 mRNA expression is stimulated through signaling mechanisms. Mammalian RGPR-p117 conserves a leucine zipper motif, which is present in many gene regulatory proteins. RGPR-p117 has been shown to translocate from the cytoplasm to the nucleus in NRK52E cells, a process which is mediated through protein kinase C signaling following hormonal stimulation. The phosphorylated RGPR-p117 binds to the TTGGC motif in the promoter region of the regucalcin gene and enhances regucalcin mRNA expression in the cells, indicating a role as a transcriptional factor. RGPR-p117 is also localized in the plasma membranes, nucleus, mitochondria, microsomes, and cytoplasm. Overexpression of RGPR-p117 has been found to induce a significant decrease in protein and DNA contents in cells, suggesting that RGPR-p117 may regulate the gene expression of other related proteins as well as the transcription factor. Also, overexpression of RGPR-p117 has a suppressive effect on cell death by inhibiting the gene expression of caspase-3, caspase-8, and Fas-associating death domain protein whose TTGGC motif is present in the promoter region of their genes. The novel protein RGPR-p117 has been shown to play an important role as a transcription factor.


RGPR-p117 Regucalcin Transcription factor Nuclear localization Apoptosis 



The author was supported in part by a Grant-in-Aid for Scientific Research (C) No. 08672522, No. 10672048, and No. 17590063 from the Ministry of Education, Science, Sports, and Culture, Japan.


  1. 1.
    Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull (Tokyo) 26:1915–1918Google Scholar
  2. 2.
    Yamaguchi M, Sugii K (1981) Properties of calcium-binding protein isolated from the soluble fraction of normal rat liver. Chem Pharm Bull (Tokyo) 29:567–570Google Scholar
  3. 3.
    Yamaguchi M (1988) Physicochemical properties of calcium-binding protein isolated from rat liver cytosol: Ca2+-induced conformational changes. Chem Pharm Bull (Tokyo) 36:286–290Google Scholar
  4. 4.
    Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255. doi: 10.1016/0014-5793(93)80998-A PubMedCrossRefGoogle Scholar
  5. 5.
    Yamaguchi M, Yoshida H (1985) Regulatory effect of calcium-binding protein isolated from rat liver cytosol on activation of fructose 1,6-diphosphatase by Ca2+-calmodulin. Chem Pharm Bull (Tokyo) 33:4489–4493Google Scholar
  6. 6.
    Yamaguchi M, Shibano H (1987) Calcium-binding protein isolated from rat liver cytosol reverses activation of pyruvate kinase by Ca2+. Chem Pharm Bull (Tokyo) 35:2025–2029Google Scholar
  7. 7.
    Yamaguchi M, Shibano H (1987) Effect of calcium-binding protein on the activation of phosphorylase a in rat hepatic particulate glycogen by Ca2+. Chem Pharm Bull (Tokyo) 35:2581–2584Google Scholar
  8. 8.
    Yamaguchi M, Shibano H (1987) Reversible effect of calcium-binding protein on the Ca2+-induced activation of succinate dehydrogenase in rat liver mitochondria. Chem Pharm Bull (Tokyo) 35:3766–3770Google Scholar
  9. 9.
    Yamaguchi M, Mori S (1988) Effect of Ca2+ and Zn2+ on 5′-nucleotidase activity in rat liver plasma membranes: hepatic calcium-binding protein (regucalcin) reverses the Ca2+ effect. Chem Pharm Bull (Tokyo) 36:321–325Google Scholar
  10. 10.
    Yamaguchi M (1992) A novel Ca2+-binding protein regucalcin and calcium inhibition. Regulatory role in liver cell function. In: Kohama K (ed) Calcium inhibition. Japan Sci Soc Press/CRC Press, Tokyo/Boca Raton, pp 19–41Google Scholar
  11. 11.
    Yamaguchi M (1998) Role of calcium-binding protein regucalcin in regenerating rat liver. J Gastroenterol Hepatol 13(Suppl.):S106–S112. doi: 10.1111/j.1440-1746.1998.tb00544.x PubMedGoogle Scholar
  12. 12.
    Yamaguchi M (2000) Role of regucalcin in calcium signaling. Life Sci 66:1769–1780. doi: 10.1016/S0024-3205(99)00602-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Yamaguchi M (2000) The role of regucalcin in nuclear regulation of regenerating liver. Biochem Biophys Res Commun 276:1–6PubMedCrossRefGoogle Scholar
  14. 14.
    Yamaguchi M (2002) Impact of aging on calcium channels and pumps. In: Mattson MP (ed) Calcium homeostasis and signaling in aging. Elsevier, Amsterdam, pp 47–65CrossRefGoogle Scholar
  15. 15.
    Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function. Int J Mol Med 15:372–389Google Scholar
  16. 16.
    Yamaguchi M, Misawa H, Uchiyama S, Morooka Y, Tsurusaki Y (2002) Role of endogenous regucalcin in bone metabolism: bone loss is induced in regucalcin transgenic rats. Int J Mol Med 10:377–383PubMedGoogle Scholar
  17. 17.
    Yamaguchi M, Igarashi A, Uchiyama S, Sawada N (2004) Hyperlipidemia is induced in regucalcin transgenic rats with increasing age. Int J Mol Med 14:647–651PubMedGoogle Scholar
  18. 18.
    Misawa H, Yamaguchi M (2000) The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int J Mol Med 6:191–196PubMedGoogle Scholar
  19. 19.
    Nikapitiya C, De Zoysa M, Kang HS, Oh C, Whang I, Lee J (2008) Molecular characterization and expression analysis of regucalcin in disk abalone (Haliotis discus discus): intramuscular calcium administration stimulates the regucalcin mRNA expression. Comp Biochem Physiol B Biochem Mol Biol 150:117–124. doi: 10.1016/j.cbpb.2008.02.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Shimokawa N, Yamaguchi M (1992) Calcium administration stimulates the expression of calcium-binding protein regucalcin mRNA in rat liver. FEBS Lett 305:151–154. doi: 10.1016/0014-5793(92)80884-J PubMedCrossRefGoogle Scholar
  21. 21.
    Yamaguchi M, Isogai M (1993) Tissue concentration of calcium-binding protein regucalcin in rats by enzyme-linked immunoadsorbent assay. Mol Cell Biochem 122:65–68. doi: 10.1007/BF00925738 PubMedCrossRefGoogle Scholar
  22. 22.
    Shimokawa N, Isogai M, Yamaguchi M (1995) Specific species and tissue differences for the gene expression of calcium-binding protein regucalcin. Mol Cell Biochem 143:67–71. doi: 10.1007/BF00925928 PubMedCrossRefGoogle Scholar
  23. 23.
    Shimokawa N, Matsuda Y, Yamaguchi M (1995) Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163. doi: 10.1007/BF01322338 PubMedCrossRefGoogle Scholar
  24. 24.
    Yamaguchi M, Makino R, Shimokawa N (1996) The 5′end sequences and exon organization in rat regucalcin gene. Mol Cell Biochem 165:145–150. doi: 10.1007/BF00229476 PubMedCrossRefGoogle Scholar
  25. 25.
    Thiselton DL, McDowall J, Brandau O, Ramser J, d’Esposito F, Bhattacharga SS, Ross MT, Hardcastle AJ, Meindl A (2002) An integrated, functionally annotated gene map of the DXS8026-ELK1 internal on human Xp11.3–Xp11.23: potential hotspot for neurogenetic disorders. Genomics 79:560–572. doi: 10.1006/geno.2002.6733 PubMedCrossRefGoogle Scholar
  26. 26.
    Murata T, Yamaguchi M (1998) Ca2+ administration stimulates the binding of AP-1 factor to the 5′-flanking region of the rat gene for the Ca2+-binding protein regucalcin. Biochem J 329:157–163PubMedGoogle Scholar
  27. 27.
    Murata T, Yamaguchi M (1999) Promoter characterization of the rat gene for Ca2+-binding protein regucalcin. Transcriptional regulation by signaling factors. J Biol Chem 274:1277–1285. doi: 10.1074/jbc.274.3.1277 PubMedCrossRefGoogle Scholar
  28. 28.
    Miasawa H, Yamaguchi M (2000) Involvement of hepatic nuclear factor I binding motif in transcriptional regulation of Ca2+-binding protein regucalcin gene. Biochem Biophys Res Commun 269:270–278. doi: 10.1006/bbrc.2000.2275 CrossRefGoogle Scholar
  29. 29.
    Misawa H, Yamaguchi M (2000) Intracellular signaling factors-enhanced hepatic nuclear protein binding to TTGGC sequence in the rat regucalcin gene promoter: involvement of protein phosphorylation. Biochem Biophys Res Commun 279:275–281. doi: 10.1006/bbrc.2000.3934 PubMedCrossRefGoogle Scholar
  30. 30.
    Misawa H, Yamaguchi M (2002) Identification of transcription factor in the promoter region of rat regucalcin gene: binding of nuclear factor I-A1 to TTGGC motif. J Cell Biochem 84:795–802. doi: 10.1002/jcb.10082 PubMedCrossRefGoogle Scholar
  31. 31.
    Misawa H, Yamaguchi M (2001) Molecular cloning and sequencing of the cDNA coding for a novel regucalcin gene promoter region-related protein in rat, mouse and human liver. Int J Mol Med 8:513–520PubMedGoogle Scholar
  32. 32.
    Misawa H, Yamaguchi M (2002) Gene expression for a novel protein RGPR-p117 in various species: the stimulation by intracellular signaling factors. J Cell Biochem 87:188–193. doi: 10.1002/jcb.10289 PubMedCrossRefGoogle Scholar
  33. 33.
    Sawada N, Yamaguchi M (2005) A novel regucalcin gene promoter region-related protein: comparison of nucleotide and amino acid sequences in vertebrates species. Int J Mol Med 15:97–104PubMedGoogle Scholar
  34. 34.
    Bairch A, Bucher P, Hofmann K (1997) The PROSITE database, its status in 1997. Nucleic Acids Res 25:217–221. doi: 10.1093/nar/25.1.217 CrossRefGoogle Scholar
  35. 35.
    Landschulz WH, Johnson PF, McKnight SL (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764. doi: 10.1126/science.3289117 PubMedCrossRefGoogle Scholar
  36. 36.
    Busch SJ, Sassone-Corsi P (1990) Dimers, leucine zippers and DNA-binding domains. Trends Genet 6:36–40. doi: 10.1016/0168-9525(90)90071-D PubMedCrossRefGoogle Scholar
  37. 37.
    O’Shea EK, Rutkowski R, Kim PS (1989) Evidence that the leucine zipper is a coiled coil. Science 243:538–542. doi: 10.1126/science.2911757 PubMedCrossRefGoogle Scholar
  38. 38.
    Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246:911–916. doi: 10.1126/science.2683088 PubMedCrossRefGoogle Scholar
  39. 39.
    O’Shea EK, Rutkowski R, Stafford WFIII, Kim PS (1989) Preferential heterodimer formation by isolated leucine zippers from fos anf jun. Science 245:646–648. doi: 10.1126/science.2503872 PubMedCrossRefGoogle Scholar
  40. 40.
    Maekawa T, Sakura H, Kanei-Ishii C, Sudo T, Yoshimura T, Fujisawa J, Yoshida M, Ishii S (1989) Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J 8:2023–2028PubMedGoogle Scholar
  41. 41.
    Collum RG, Alt FW (1990) Are myc proteins transcription factors? Cancer Cells 2:69–75PubMedGoogle Scholar
  42. 42.
    Clerc RG, Corcoran LM, LeBowitz JH, Baltimore D, Sharp PA (1988) The B-cell-specific Oct-2 protein contains POU box-and homeo box-type domains. Genes Dev 2:1570–1581. doi: 10.1101/gad.2.12a.1570 PubMedCrossRefGoogle Scholar
  43. 43.
    Yamaguchi M, Nakajima M (1999) Involvement of intracellular signaling factors in the serum-enhanced Ca2+-binding protein regucalcin mRNA expression in the cloned rat hepatoma cells (H4-II-E). J Cell Biochem 74:81–89. doi: 10.1002/(SICI)1097-4644(19990701)74:1<81::AID-JCB9>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  44. 44.
    Yamaguchi M, Oishi K (1995) 17β-Estradiol stimulates the expression of hepatic calcium-binding protein regucalcin mRNA in rats. Mol Cell Biochem 143:137–141. doi: 10.1007/BF01816947 PubMedCrossRefGoogle Scholar
  45. 45.
    Nishizuka Y (1986) Studies and perspectives of protein kinase C. Science 233:305–312. doi: 10.1126/science.3014651 PubMedCrossRefGoogle Scholar
  46. 46.
    Kido Y, Nakae J, Accili D (2001) Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 86:972–979. doi: 10.1210/jc.86.3.972 PubMedCrossRefGoogle Scholar
  47. 47.
    Yamaguchi M, Misawa H, Ma ZJ (2003) Novel protein RGPR-p117: the gene expression in physiologic state and the binding activity to regucalcin gene promoter region in rat liver. J Cell Biochem 88:1092–1100. doi: 10.1002/jcb.10437 PubMedCrossRefGoogle Scholar
  48. 48.
    Sawada N, Nakagawa T, Murata T, Yamaguchi M (2005) Nuclear localization of a novel protein, RGPR-p117, in cloned normal rat kidney proximal tubular epithelial cells. Int J Mol Med 16:809–814PubMedGoogle Scholar
  49. 49.
    Verheijen MHG, Defize LHK (1997) Parathyroid hormone activates mitogen-activated protein kinase via a cAMP-mediated pathway independent of rats. J Biol Chem 272:3423–3429. doi: 10.1074/jbc.272.6.3423 PubMedCrossRefGoogle Scholar
  50. 50.
    Agus ZS, Chiu PJ, Goldberg M (1997) Regulation of urinary calcium excretion in the rat. Am J Physiol 232:F545–F549Google Scholar
  51. 51.
    Sawada N, Yamaguchi M (2005) Overexpression of RGPR-p117 enhances regucalcin gene expression in cloned normal rat kidney proximal tubular epithelial cells. Int J Mol Med 16:1049–1055PubMedGoogle Scholar
  52. 52.
    Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita E (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2+ dependent protein kinase. Biochem Biophys Res Commun 135:397–402. doi: 10.1016/0006-291X(86)90008-2 PubMedCrossRefGoogle Scholar
  53. 53.
    Peleck SL, Charest DL, Mordret GP, Siow YL, Palaty C, Campbell D, Chaslton L, Samiei M, Sanghera JS (1993) Networking with mitogen-activated protein kinases. Mol Cell Biochem 127(128):157–169. doi: 10.1007/BF01076767 CrossRefGoogle Scholar
  54. 54.
    Sawada N, Yamaguchi M (2006) Overexpression of RGPR-p117 enhances regucalcin gene promoter activity in cloned normal rat kidney proximal tubular epithelial cells: involvement of TTGGC motif. J Cell Biochem 99:589–597. doi: 10.1002/jcb.20907 PubMedCrossRefGoogle Scholar
  55. 55.
    Yamaguchi M, Daimon Y (2005) Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: involvement of intracellular signaling factors and cell cycle-related genes. J Cell Biochem 95:1169–1177. doi: 10.1002/jcb.20490 PubMedCrossRefGoogle Scholar
  56. 56.
    Spinozzi F, Pagliacci MC, Migliorati G, Moraca R, Gribnami F, Riccardi C, Nicoletti I (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in jurkat T-leukemia cells. Leuk Res 18:431–439. doi: 10.1016/0145-2126(94)90079-5 PubMedCrossRefGoogle Scholar
  57. 57.
    Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236. doi: 10.1016/0092-8674(95)90405-0 PubMedCrossRefGoogle Scholar
  58. 58.
    Tomono S, Sawada N, Yamaguchi M (2007) Overexpression of RGPR-p117 induces the decrease in protein and DNA contents in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 20:79–83PubMedGoogle Scholar
  59. 59.
    Yamaguchi M, Tomono S, Nakagawa T (2007) Overexpression of RGPR-p117 suppresses apoptotic cell death and its related gene expression in cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 20:565–571PubMedGoogle Scholar
  60. 60.
    Jiang S, Chow SC, Nicotera P, Orrenius S (1994) Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca2+-ATPase inhibitor thapsigargin. Exp Cell Res 212:84–92. doi: 10.1006/excr.1994.1121 PubMedCrossRefGoogle Scholar
  61. 61.
    Kaneko Y, Tsukamoto A (1994) Thapsigargin-induced persistent intracellular calcium pool depletion and apoptosis in human hepatoma cells. Cancer Lett 79:147–155. doi: 10.1016/0304-3835(94)90253-4 PubMedCrossRefGoogle Scholar
  62. 62.
    Chohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocytes nuclei leads to cell death. J Immunol 132:38–42Google Scholar
  63. 63.
    Ribeiro JM, Carson DA (1993) Ca2+/Mg2+-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. Biochemistry 32:9129–9136. doi: 10.1021/bi00086a018 PubMedCrossRefGoogle Scholar
  64. 64.
    Yamaguchi M, Sakurai K (2002) Inhibitory effect of calcium-binding protein regucalcin on Ca2+-activated DNA fragmentation in rat liver nuclei. FEBS Lett 279:163–171Google Scholar
  65. 65.
    Pereira M, Millot J-M, Sebille S, Manfait M (2002) Inhibitory effect of extracellular Mg2+ on intracellular Ca2+ dynamic changes and thapsigargin-induced apoptosis in human cancer MCF7 cells. Mol Cell Biochem 229:163–171. doi: 10.1023/A:1017972622312 PubMedCrossRefGoogle Scholar
  66. 66.
    Yamaguchi M, Mori S (1990) Effect of calcium-binding protein regucalcin on hepatic protein synthesis: inhibition of aminoacyl-tRNA synthetase activity. Mol Cell Biochem 99:25–32. doi: 10.1007/BF01261390 PubMedCrossRefGoogle Scholar
  67. 67.
    Yamaguchi M, Ueoka S (1997) Inhibitory effect of calcium-binding protein regucalcin on ribonucleic acid synthesis in isolated rat liver nuclei. Mol Cell Biochem 173:169–175. doi: 10.1023/A:1006833111236 PubMedCrossRefGoogle Scholar
  68. 68.
    Yamaguchi M, Kanayama Y (1996) Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol Cell Biochem 162:121–126. doi: 10.1007/BF00227538 PubMedCrossRefGoogle Scholar
  69. 69.
    Nakagawa T, Yamaguchi M (2005) Overexpression of regucalcin suppresses apoptotic cell death in cloned normal rat kidney proximal tubular epithelial NRK52E cells: change in apoptosis-related gene expression. J Cell Biochem 96:1274–1285. doi: 10.1002/jcb.20617 PubMedCrossRefGoogle Scholar
  70. 70.
    Bhattacharyya D, Glick BS (2007) Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. Mol Biol Cell 18:839–849. doi: 10.1091/mbc.E06-08-0707 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism and Lipids, Department of MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations