Molecular and Cellular Biochemistry

, Volume 327, Issue 1–2, pp 39–45

The activity of erythrocyte and brain Na+/K+ and Mg2+-ATPases in rats subjected to acute homocysteine and homocysteine thiolactone administration

  • Aleksandra Rašić-Marković
  • Olivera Stanojlović
  • Dragan Hrnčić
  • Danijela Krstić
  • Mirjana Čolović
  • Veselinka Šušić
  • Tatjana Radosavljević
  • Dragan Djuric


Hyperhomocysteinemia is associated with various pathologies including cardiovascular disease, stroke, and cognitive dysfunctions. Systemic administration of homocysteine can trigger seizures in animals, and patients with homocystinuria suffer from epileptic seizures. Available data suggest that homocysteine can be harmful to human cells because of its metabolic conversion to homocysteine thiolactone, a reactive thioester. A number of reports have demonstrated a reduction of Na+/K+-ATPase activity in cerebral ischemia, epilepsy and neurodegeneration possibly associated with excitotoxic mechanisms. The aim of this study was to examine the in vivo effects of d,l-homocysteine and d,l-homocysteine thiolactone on Na+/K+- and Mg2+-ATPase activities in erythrocyte (RBC), brain cortex, hippocampus, and brain stem of adult male rats. Our results demonstrate a moderate inhibition of rat hippocampal Na+/K+-ATPase activity by d,l-homocysteine, which however expressed no effect on the activity of this enzyme in the cortex and brain stem. In contrast,d,l-homocysteine thiolactone strongly inhibited Na+/K+-ATPase activity in cortex, hippocampus and brain stem of rats. RBC Na+/K+-ATPase and Mg2+-ATPase activities were not affected by d,l-homocysteine, while d,l-homocysteine thiolactone inhibited only Na+/K+-ATPase activity. This study results show that homocysteine thiolactone significantly inhibits Na+/K+-ATPase activity in the cortex, hippocampus, and brain stem, which may contribute at least in part to the understanding of excitotoxic and convulsive properties of this substance.


Homocysteine Homocysteine thiolactone Na+/K+-ATPase Mg2+-ATPase Erythrocyte Brain Rat 


  1. 1.
    Mato JM, Lu SC (2005) Homocysteine, the bad thiol. Hepatology 41:976–979. doi:10.1002/hep.20708 PubMedCrossRefGoogle Scholar
  2. 2.
    Budge J, Johnston C, Hogervorst E et al (2000) Plasma total homocysteine and cognitive performance in a volunteer elderly population. Ann N Y Acad Sci 903:407–410. doi:10.1111/j.1749-6632.2000.tb06392.x PubMedCrossRefGoogle Scholar
  3. 3.
    Sachdev PS, Valenzuela M, Brodaty H et al (2003) Homocysteine as a risk factor for cognitive impairment in stroke patients. Dement Geriatr Cogn Disord 15:155–162. doi:10.1159/000068481 PubMedCrossRefGoogle Scholar
  4. 4.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613 PubMedCrossRefGoogle Scholar
  5. 5.
    Prins ND, Den Heijer T, Hofman A, Koudstaal PJ, Jolles J, Clarke R, Breteler MM (2002) Homocysteine and cognitive function in the elderly: the Rotterdam Scan Study. Neurology 59:1375–1380PubMedGoogle Scholar
  6. 6.
    Matte C, Scherer EBS, Stefanello FM et al (2007) Concurrent folate treatment prevents Na+, K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int J Dev Neurosci 25:545–552. doi:10.1016/j.ijdevneu.2007.10.003 PubMedCrossRefGoogle Scholar
  7. 7.
    Djuric D, Jakovljevic V, Rasic-Markovic A, Djuric A, Stanojlovic O (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Dis Allied Sci 50:39–48PubMedGoogle Scholar
  8. 8.
    Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926PubMedGoogle Scholar
  9. 9.
    Folbergová J, Haugvicová R, Mareš P (2000) Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp Neurol 161:336–345. doi:10.1006/exnr.1999.7264 CrossRefGoogle Scholar
  10. 10.
    Jakubowski H (2006) Pathophysiological consequences of homocysteine excess. J Nutr 136:1741S–1749SPubMedGoogle Scholar
  11. 11.
    Rodrigez LA, Arnaiz G, Pena C (1995) Characterization of Na+/K+-ATPase. Neurochem Int 27:319–327. doi:10.1016/0197-0186(95)00013-X CrossRefGoogle Scholar
  12. 12.
    Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71. doi:10.1016/0301-0082(94)90015-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650PubMedGoogle Scholar
  14. 14.
    Sanui H, Rubin H (1982) The role of magnesium in cell proliferation and transformation. In: Boynton AL, MacKeehan WL, Winitfield JP (eds) Ions, cell proliferation and cancer. Academic Press, New York, pp 517–537Google Scholar
  15. 15.
    Vasić V, Jovanović D, Krstić D et al (1999) Prevention and recovery of CuSO4-induced inhibition of Na+/K+-ATPase in rat brain synaptosomes by EDTA. Toxicol Lett 110:95–104. doi:10.1016/S0378-4274(99)00144-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Ekholm A, Katsura K, Kristián T, Liu M, Folbergrová J, Siesjö BK (1993) Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Res 604:185–191. doi:10.1016/0006-8993(93)90367-V PubMedCrossRefGoogle Scholar
  17. 17.
    Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+/K+-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149. doi:10.1016/0920-1211(92)90034-Q PubMedCrossRefGoogle Scholar
  18. 18.
    Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322. doi:10.1016/0306-4522(93)90254-D PubMedCrossRefGoogle Scholar
  19. 19.
    Bingami A, Palladini C, Venturini G (1966) Effect of cardiazol on sodium-potassium adenosine triphosphatase of the rat brain in vivo. Brain Res 1:413–414. doi:10.1016/0006-8993(66)90134-X CrossRefGoogle Scholar
  20. 20.
    Streck EL, Matte C, Vieira PS et al (2003) Impairment of energy metabolism in hippocampus of rats subjected to chemically-induced hyperhomocysteinaemia. Biochim Biophys Acta 1637:187–192PubMedGoogle Scholar
  21. 21.
    Matte C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+, K+-ATPase activity in parietal, prefrontal and cingulated cortex of young rats. Int J Dev Neurosci 22:185–190. doi:10.1016/j.ijdevneu.2004.05.007 PubMedCrossRefGoogle Scholar
  22. 22.
    Jakubowski H (2004) Molecular basis of homocysteine toxicity in humans. Cell Mol Life Sci 61:470–487. doi:10.1007/s00018-003-3204-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Post RI, Merit CR, Kosolving CR, Albbright CD (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem 235:1796–1802PubMedGoogle Scholar
  24. 24.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  25. 25.
    Cohen RS, Blomber F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex: I. Overall morphology and protein composition. J Cell Biol 74:181–203. doi:10.1083/jcb.74.1.181 PubMedCrossRefGoogle Scholar
  26. 26.
    Towle AC, Sze PY (1983) Steroid binding to synaptic plasma membrane: differential binding of glucocorticoids and gonadal steroids. J Steroid Biochem 18:135–143. doi:10.1016/0022-4731(83)90079-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Horvat A, Nikezić G, Martinović JV (1995) Estradiol binding to synaptosomal plasma membranes of rat brain regions. Experientia 51(1):11–15PubMedGoogle Scholar
  28. 28.
    Streck EL, Zugno AI, Tagliari B, Wannmacher C, Wajner M, Wyse AT (2002) Inhibition of Na+, K+-ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91. doi:10.1023/A:1015594111778 PubMedCrossRefGoogle Scholar
  29. 29.
    Wyse AT, Zugno AI, Streck EL et al (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689. doi:10.1023/A:1021647329937 PubMedCrossRefGoogle Scholar
  30. 30.
    Matte C, Durigon E, Stefanello FM, Cipriani F, Wajner M, Wyse AT (2006) Folic acid pretreatment prevents the reduction of Na+, K+-ATPase and butyrylcholinesterase activities in rats subjected to acute hyperhomocysteinemia. Int J Dev Neurosci 24:3–8. doi:10.1016/j.ijdevneu.2005.12.003 PubMedCrossRefGoogle Scholar
  31. 31.
    Gharib A, Chabennes B, Sarda N, Pacheco H (1983) In vivo elevation of mouse brain S-adenosil-l-homocysteine after treatment with l-homocysteine. J Neurochem 40:1110–1112. doi:10.1111/j.1471-4159.1983.tb08100.x PubMedCrossRefGoogle Scholar
  32. 32.
    Stanojlović O, Rašić-Marković A, Hrnčić D, Sušić V, Macut D, Radosavljević T, Djuric D (2008) Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell Mol Neurobiol [Epub ahead of print]Google Scholar
  33. 33.
    Schulpis KH, Giannoulia-Karantana A, Papaconstantinou ED, Parthimos T, Tjamouranis I, Tsakiris S (2006) Erythrocyte membrane Na+, K+-ATPase and Mg2+-ATPase activities in subjects with methylenetetrahydrofolate reductase (MTHFR) 677 C → T genotype and moderate hyperhomocysteinemia. The role of l-phenylalanine and l-alanine. Clin Chem Lab Med 44:423–427. doi:10.1515/CCLM.2006.069 PubMedCrossRefGoogle Scholar
  34. 34.
    Rašić-Marković A, Krstić D, Vujović Z et al (2008) Modulations of rabbit erythrocyte ATPase activities induced by in vitro and in vivo exposure to ethanol. Mol Cell Biochem 308:111–116. doi:10.1007/s11010-007-9618-z PubMedCrossRefGoogle Scholar
  35. 35.
    Shamraj OI, Lingrel JB (1994) A putative fourth Na+K+-ATPase α subunit gene is expressed in testis. Proc Natl Acad Sci USA 91:12952–12956. doi:10.1073/pnas.91.26.12952 PubMedCrossRefGoogle Scholar
  36. 36.
    Cameron R, Klein L, Shyjan AW, Rakic P, Levenson R (1994) Neurons and astroglia express distinct subsets of the Na+, K+-ATPase α and β subunits. Brain Res Mol Brain Res 21:333–343. doi:10.1016/0169-328X(94)90264-X PubMedCrossRefGoogle Scholar
  37. 37.
    Mobasheri A, Avila J, Cozar-Castellano I, Brownleader MD, Trevan M, Francis MJO, Lamb JF, Martin-Vasallo P (2000) Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. Biosci Rep 20:51–91. doi:10.1023/A:1005580332144 PubMedCrossRefGoogle Scholar
  38. 38.
    Lingrel JB (1992) Na,K-ATPase: isoform structure, function, and expression. J Bioenerg Biomembr 24:263–270PubMedGoogle Scholar
  39. 39.
    Gloor S, Antonicek H, Sweadner KJ, Pagliusi S, Frank R, Moos M, Schachner M (1990) The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol 110:165–174. doi:10.1083/jcb.110.1.165 PubMedCrossRefGoogle Scholar
  40. 40.
    Watts AG, Sanchez-Watts G, Emanuel JR, Levenson R (1991) Cell-specific expression of mRNAs encoding Na+, K+-ATPase alpha- and beta-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci USA 88:7425–7429. doi:10.1073/pnas.88.16.7425 PubMedCrossRefGoogle Scholar
  41. 41.
    Viola MS, Rodríguez de Lores Arnaiz G (2007) Brain Na+, K+-ATPase isoforms: different hypothalamus and mesencephalon response to acute desipramine treatment. Life Sci 81:228–233. doi:10.1016/j.lfs.2007.05.011 PubMedCrossRefGoogle Scholar
  42. 42.
    Cousin MA, Nicholls DG, Pocock JM (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by oubain. J Neurochem 64:2097–2104PubMedCrossRefGoogle Scholar
  43. 43.
    Lees GJ, Leong W (1994) Brain lesions induced by specific and non-specific inhibitors of sodium-potassium ATPase. Brain Res 649:225–233. doi:10.1016/0006-8993(94)91068-5 PubMedCrossRefGoogle Scholar
  44. 44.
    Streck EL, Zugno AI, Tagliari B et al (2002) On the mechanism of the inhibition of Na+, K+-ATPase activity caused by homocysteine. Int J Dev Neurosci 20:77–81. doi:10.1016/S0736-5748(02)00043-6 PubMedCrossRefGoogle Scholar
  45. 45.
    Vizi ES (1979) Presynaptic modulation of neurochemical transmission. Prog Neurobiol 12:181–290. doi:10.1016/0301-0082(79)90011-X PubMedCrossRefGoogle Scholar
  46. 46.
    Vaillend C, Mason SE, Cuttle MF, Alger BE (2002) Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+/K+-ATPases in the rat CA1 hippocampal region. J Neurophysiol 88:2963–2978. doi:10.1152/jn.00244.2002 PubMedCrossRefGoogle Scholar
  47. 47.
    Streck EL, Vieira PS, Clovis MD et al (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154. doi:10.1023/A:1023815119931 PubMedCrossRefGoogle Scholar
  48. 48.
    Hogg N (1999) The effect of cysteine on the auto-oxidation of homocysteine. Free Radic Biol Med 27:28–33. doi:10.1016/S0891-5849(99)00029-5 PubMedCrossRefGoogle Scholar
  49. 49.
    Folbergrova J (1994) NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol 130:344–350. doi:10.1006/exnr.1994.1213 PubMedCrossRefGoogle Scholar
  50. 50.
    Spence AM, Rasey JS, Dwyer-Hansen L et al (1995) Toxicity, biodistribution and radioprotective capacity of L-homocysteine thiolactone in CNS tissues and tumors in rodents: comparison with prior results with phosphorothioates. Radiother Oncol 35:216–226. doi:10.1016/0167-8140(95)01543-P PubMedCrossRefGoogle Scholar
  51. 51.
    Sanders AP, Kramer RS, Woodhall B, Currie WD (1970) Brain adenosine triphosphate: decreased concentration precedes convulsions. Science 169:206–208. doi:10.1126/science.169.3941.206 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Aleksandra Rašić-Marković
    • 1
  • Olivera Stanojlović
    • 1
  • Dragan Hrnčić
    • 1
  • Danijela Krstić
    • 2
  • Mirjana Čolović
    • 3
  • Veselinka Šušić
    • 4
  • Tatjana Radosavljević
    • 5
  • Dragan Djuric
    • 1
  1. 1.Laboratory of Neurophysiology, Institute of Medical Physiology, School of MedicineUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, School of MedicineUniversity of BelgradeBelgradeSerbia
  3. 3.“Vinča” Institute of Nuclear SciencesBelgradeSerbia
  4. 4.Serbian Academy of Sciences and ArtsBelgradeSerbia
  5. 5.Institute of Pathophysiology, School of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations