Molecular and Cellular Biochemistry

, Volume 325, Issue 1–2, pp 199–208 | Cite as

Association of genetic variants in Methylenetetrahydrofolate Reductase and Paraoxonase-1 genes with homocysteine, folate and vitamin B12 in coronary artery disease

  • Makbule Aydin
  • Cahide Gokkusu
  • Elif Ozkok
  • Feti Tulubas
  • Yesim Unlucerci
  • Burak Pamukcu
  • Zeynep Ozbek
  • Berrin Umman
Article

Abstract

Background The aim of the present study was to investigate the association between genetic variants in metylenetetrahydrofolate reductase (MTHFR) and Paraoxonase-1 (PON1) 55/192 genes and total homocysteine (tHcy), folate, B12 vitamin, and PON1 levels in patients with coronary artery disease (CAD). Methods The study included 235 patients with CAD and 268 healthy control subjects. Results LL and LM genotypes and L allele of PON1 55 were over-represented in patients. In contrast, MM genotype and M allele were more frequent in controls. QQ genotype and Q allele of PON1 192 and CT genotype of MTHFR were significantly diminished and QR genotype and R allele were significantly elevated in CAD patients compared with controls. The plasma tHcy were elevated but B12 levels were diminished in patients. PON1 55 and 192 genetic variants were significantly associated with PON1 activity, triglyceride, total cholesterol, tHcy and, high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol in patients, respectively. Conclusion Genetic variants of PON1 55/192 and MTHFR were associated with CAD.

Keywords

B12 CAD Folate MTHFR PON1 Polymorphism Homocysteine 

References

  1. 1.
    American Heart Association (2006) Heart disease and stroke statistics-2006 update. A report from the American heart association statistics committee and stroke statistics subcommittee. Circulation 113:e85–e151. doi:10.1161/CIRCULATIONAHA.105.171600 CrossRefGoogle Scholar
  2. 2.
    Kerkeni M, Addad F, Chauffert M et al (2006) Hyperhomocysteinemia, paraoxonase activity and risk of coronary artery disease. Clin Biochem 39:821–825. doi:10.1016/j.clinbiochem.2006.05.010 PubMedCrossRefGoogle Scholar
  3. 3.
    Milani RV, Lavie CJ (2008) Homocysteine: the Rubik’s cube of cardiovascular risk factors. Mayo Clin Proc 83(11):1200–1202PubMedCrossRefGoogle Scholar
  4. 4.
    Humphrey LL, Fu R, Rogers K, Freeman M, Helfand M (2008) Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin Proc 83(11):1203–1212PubMedCrossRefGoogle Scholar
  5. 5.
    Jakubowski H (1997) Synthesis of homocysteine thiolactone in normal and malignant cells. In: Graham I, Refsum H, Rosenberg IH, Ueland PM (eds) Homocysteine metabolism: from basic science to clinical medicine. Kluwer Academic Publishers, Boston, pp 157–165Google Scholar
  6. 6.
    Stanojlovic O, Rasic-Markovic A, Hrncic D, Susic V, Macut D, Radosavljevic T, Djuric D (2008) Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell Mol Neurobiol. doi:10.1007/s10571-008-9324-8 PubMedGoogle Scholar
  7. 7.
    Seshadri S, Beiser A, Selhub J, Jacques PF et al (2002) Plasma homocysteine as a risk factor dementia and Alzheimer’s disease. N Engl J Med 346:476–483. doi:10.1056/NEJMoa011613 PubMedCrossRefGoogle Scholar
  8. 8.
    Kang SS, Zhau J, Wong PWK et al (1988) Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43:414–421PubMedGoogle Scholar
  9. 9.
    Gardemann A, Weidemann H, Philipp M (1999) The TT genotype of the methylenetetrahydrofolate reductase C677T gene polymorphism is associated with the extent of coronary atherosclerosis in patients at high risk for coronary artery disease. Eur Heart J 20:584–592. doi:10.1053/euhj.1998.1340 PubMedCrossRefGoogle Scholar
  10. 10.
    Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113. doi:10.1038/ng0595-111 PubMedCrossRefGoogle Scholar
  11. 11.
    Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD (2005) Homocysteine and stroke: evidence on a causal link from Mendelian randomization. Lancet 365:224–232PubMedGoogle Scholar
  12. 12.
    Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6:37–46. doi:10.2174/1389200052997339 PubMedCrossRefGoogle Scholar
  13. 13.
    Christen WG, Ajani UA, Glynn RJ, Hennekens CH (2000) Blood levels of homocysteine and increased risks of cardiovascular disease: causal or casual? Arch Intern Med 160:422–434. doi:10.1001/archinte.160.4.422 PubMedCrossRefGoogle Scholar
  14. 14.
    Girelli D, Martinelli N, Pizzolo F, Friso S, Olivieri O, Stranieri C et al (2003) The interaction between MTHFR 677 C → T genotype and folate status is a determinant of coronary atherosclerosis risk. J Nutr 133:1281–1285PubMedGoogle Scholar
  15. 15.
    De Luca G, Suryapranata H, Gregorio G, Lange H, Chiariello M (2005) Homocysteine and its effects on in-stent restenosis. Circulation 112:e307–e311. doi:10.1161/CIRCULATIONAHA.104.518837 PubMedCrossRefGoogle Scholar
  16. 16.
    Rozenberg O, Rosenblat M, Coleman R (2003) Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1- knockout mice. Free Radic Biol Med 34:774–784. doi:10.1016/S0891-5849(02)01429-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Jakubowski H, Zhang L, Bardeguez A, Aviv A (2000) Homocysteine thiolactone and protein homocysteinylation in human endothelial cells: implications for atherosclerosis. Circ Res 87:45–51PubMedGoogle Scholar
  18. 18.
    Jakubowski H (2000) Calcium-dependent human serum homocysteine thiolactone hydrolase: a protective mechanism against protein N-homocysteinylation. J Biol Chem 275:3957–3962. doi:10.1074/jbc.275.6.3957 PubMedCrossRefGoogle Scholar
  19. 19.
    Schmidt H, Schmidt R, Niederkorn K et al (1998) Paraoxonase PON1 polymorphism Leu-Met 54 is associated with carotid atherosclerosis: results of the Austrian Stroke Prevention Study. Stroke 29:2043–2048PubMedGoogle Scholar
  20. 20.
    Pfohl M, Koch M, Enderle MD et al (1999) Paraoxonase 192 Glu/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes 48:623–627. doi:10.2337/diabetes.48.3.623 PubMedCrossRefGoogle Scholar
  21. 21.
    Martinelli N, Girelli D, Olivieri O et al (2005) Interaction between metabolic syndrome and PON1 polymorphism as a determinant of the risk of coronary artery disease. Clin Exp Med 5:20–30. doi:10.1007/s10238-005-0060-9 PubMedCrossRefGoogle Scholar
  22. 22.
    Chobanian AV, Bakris GL, Black HR, et al. The National High Blood Pressure Education Program Coordinating Committee (2003) Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 42: 1206–1252 (JNC 7: Complete Reports)Google Scholar
  23. 23.
    American Diabetes Association (2006) Diagnosis and classification of diabetes mellitus. Diabetes Care 29(Suppl 1):S43–S48Google Scholar
  24. 24.
    Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report (2002) National Cholesterol Education Program National Heart, Lung, and Blood Institute National Institutes of Health NIH Publication No. 02-5215Google Scholar
  25. 25.
    Vester B, Rasmussen K (1991) High performance liquid chromatography method for rapid and accurate determination of homocysteine in plasma and serum. Eur J Clin Chem Clin Biochem 29:549–554PubMedGoogle Scholar
  26. 26.
    Ubbink JB, Vermaak WJH, Bissbort S (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J Chromatogr A 565:441–446. doi:10.1016/0378-4347(91)80407-4 CrossRefGoogle Scholar
  27. 27.
    Furlong CE, Richter RJ, Seidel SL (1989) Spectrophotometric assay for enzymatic hydrolysis of the active metabolites of chloropyrites and parathion by plasma paraoxonase/arylesterase. Anal Biochem 180:242–247. doi:10.1016/0003-2697(89)90424-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Miller SA, Dykes DD, Polesky HF (1988) Simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215. doi:10.1093/nar/16.3.1215 PubMedCrossRefGoogle Scholar
  29. 29.
    Kara I, Sazci A, Ergul E (2003) Association of the C677T and A1298C polymorphisms in the 5, 10 methylentetrahydrofolate reductase gene in patients with migraine risk. Brain Res Mol Brain Res 111:84–90. doi:10.1016/S0169-328X(02)00672-1 PubMedCrossRefGoogle Scholar
  30. 30.
    Humbert R, Adler DA, Disteche CM et al (1993) The molecular basis of the human serum paraoxonase activity polymorphism. Nat Genet 3:73–76. doi:10.1038/ng0193-73 PubMedCrossRefGoogle Scholar
  31. 31.
    Angeline T, Jeyaraj N, Tsongalia GJ (2007) MTHFR gene polymorphisms, B-vitamins and hyperhomocysteinemia in young and middle-aged acute myocardial infarction patients. Exp Mol Pathol 82:227–233. doi:10.1016/j.yexmp.2007.02.005 PubMedCrossRefGoogle Scholar
  32. 32.
    Andreassi MG, Botto N, Cocci F et al (2003) Methylenetetrahydrofolate reductase gene C677T polymorphism, homocysteine, vitamin B12, and DNA damage in coronary artery disease. Hum Genet 112:171–177PubMedGoogle Scholar
  33. 33.
    Hanson NQ, Aras O, Yang F (2001) C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem 47:661–666PubMedGoogle Scholar
  34. 34.
    Selhub J, Jacques PF, Bostom AG (2000) Relationship between plasma homocysteine and vitamin status in the Framingham study population. Impact of folic acid fortification. Public Health Rev 28:117–145PubMedGoogle Scholar
  35. 35.
    Stott DJ, MacIntosh G, Lowe GD et al (2005) Randomized controlled trial of homocysteine-lowering vitamin treatment in elderly patients with vascular disease. Am J Clin Nutr 82:1320–1326PubMedGoogle Scholar
  36. 36.
    Clarke R (1998) Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomized trials. BMJ 316:894–898Google Scholar
  37. 37.
    Djuric D, Vusanovic A, Jakovljevic V (2007) The effects of folic acid and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart. Mol Cell Biochem 300:177–183. doi:10.1007/s11010-006-9381-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Djuric D, Jakovljevic V, Rasic-Markovic A, Djuric A, Stanojlovic O (2008) Homocysteine, folic acid and coronary artery disease: possible impact on prognosis and therapy. Indian J Chest Dis Allied Sci 50(1):39–48PubMedGoogle Scholar
  39. 39.
    Selhub J, Jacques PF, Rosenberg IH (1999) Serum total homocysteine concentrations in the third national health and nutrition examination survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 131:331–339PubMedGoogle Scholar
  40. 40.
    Melo SS, Persuhn DC, Meirelles MS et al (2006) G1793A polymorphisms in the methylenetetrahydrofolate gene: effect of folic acid on homocysteine levels. Mol Nutr Food Res 50:769–774. doi:10.1002/mnfr.200600020 PubMedCrossRefGoogle Scholar
  41. 41.
    Lucock M (2000) Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71:121–138. doi:10.1006/mgme.2000.3027 PubMedCrossRefGoogle Scholar
  42. 42.
    Chwatko G, Jakubowski H (2005) The determination of homocysteine-thiolactone in human plasma. Anal Biochem 337:271–277. doi:10.1016/j.ab.2004.11.035 PubMedCrossRefGoogle Scholar
  43. 43.
    Jakubowski H (2003) Homocysteine-thiolactone and S-nitroso-homocysteine mediate incorporation of homocysteine into protein in humans. Clin Chem Lab Med 41:1462–1466. doi:10.1515/CCLM.2003.224 PubMedCrossRefGoogle Scholar
  44. 44.
    Mackness B, Davies GK, Turkie W et al (2001) Paraoxonase status in coronary heart disease are activity and concentration more important than genotype? Arterioscler Thromb Vasc Biol 21:1451–1457. doi:10.1161/hq0901.094247 PubMedCrossRefGoogle Scholar
  45. 45.
    Tomas M, Senti M, Garcia-Faria F et al (2000) Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 20:2113–2119PubMedGoogle Scholar
  46. 46.
    Ozkok E, Aydin M, Babalik E, Ozbek Z, Ince N, Kara I (2008) Combined impact of matrix metalloproteinase-3 and paraoxonase 1 55/192 gene variants on coronary artery disease in Turkish patients. Med Sci Monit 14(10):CR536–CR542PubMedGoogle Scholar
  47. 47.
    Agachan B, Yilmaz H, Karaali Z, Isbir T (2004) Paraoxonase 55 and 192 polymorphism and its relationship to serum paraoxonase activity and serum lipids in Turkish patients with non- insulin dependent diabetes mellitus. Cell Biochem Funct 22:163–168. doi:10.1002/cbf.1070 PubMedCrossRefGoogle Scholar
  48. 48.
    Ombres D, Pannitteri G, Montali A et al (1998) The gln-Arg 192 polymorphism of human paraoxonase gene is not associated with coronary artery disease in Italian patients. Arterioscler Thromb Vasc Biol 18:1611–1616PubMedGoogle Scholar
  49. 49.
    Domagala TB, Lacinski M, Trzeciak WH et al (2006) The correlation of homocysteine-thiolactonase activity of the paraoxonase (PON1) protein with coronary heart disease status. Cell Mol Biol (Noisyle-grand) 52:4–10Google Scholar
  50. 50.
    Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, Fu X, Shao M, Brennan DM, Ellis SG, Brennan ML, Allayee H, Lusis AJ, Hazen SL (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 299:1265–1276. doi:10.1001/jama.299.11.1265 PubMedCrossRefGoogle Scholar
  51. 51.
    Leviev I, Negro F, James RW (1997) Two alleles of the human paraoxonase gene produce different amounts of mRNA: an explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler Thromb Vasc Biol 17:2935–2939PubMedGoogle Scholar
  52. 52.
    Steinberg BA, Cannon CP, Hernandez AF et al (2007) Medical therapies and invasive treatments for coronary artery disease by body mass: the “obesity paradox” in the Get with the Guidelines database. Am J Cardiol 100:1331–1335. doi:10.1016/j.amjcard.2007.06.019 PubMedCrossRefGoogle Scholar
  53. 53.
    Serrato M, Marian AJ (1995) A variant of human paraoxonase/arylesterase (HUMPONA) gene is risk factor for coronary artery disease. J Clin Invest 96:3005–3008. doi:10.1172/JCI118373 PubMedCrossRefGoogle Scholar
  54. 54.
    Campo S, Sardo MA, Trimarchi G et al (2004) The paraoxonase promoter polymorphism (−107) T > C is not associated with carotid intima-media thickness in Sicilian hypercholesterolemic patients. Clin Biochem 37:388–394. doi:10.1016/j.clinbiochem.2003.12.012 PubMedCrossRefGoogle Scholar
  55. 55.
    Hegele RA, Brunt JH, Connelly PW (1995) A polymorphism of the paraoxonase gene associated with variation in plasma lipoproteins in a genetic isolate. Arterioscler Thromb Vasc Biol 15:89–95PubMedGoogle Scholar
  56. 56.
    Ruiz J, Blanche H, James RW (1995) Gln-Arg 192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346:869–872. doi:10.1016/S0140-6736(95)92709-3 PubMedCrossRefGoogle Scholar
  57. 57.
    Sanghera DK, Aston CE, Saha N, Kamboh MI (1998) DNA polymorphisms in two paraoxonase genes are associated with the risk of coronary heart disease. Am J Hum Genet 62:36–44. doi:10.1086/301669 PubMedCrossRefGoogle Scholar
  58. 58.
    Alexander RW (1995) Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 25:155–161PubMedGoogle Scholar
  59. 59.
    Zama T, Murata M, Matsubara YK et al (1997) A 192Arg variant of the human paraoxonase (HUMPONA) gene polymorphism is associated with an increased risk for coronary artery disease in the Japanese. Arterioscler Thromb Vasc Biol 17:3565–3569PubMedGoogle Scholar
  60. 60.
    Sanghera DK, Saha N, Aston CE, Kamboh MI (1997) Genetic polymorphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol 17:1067–1073PubMedGoogle Scholar
  61. 61.
    Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207 PubMedCrossRefGoogle Scholar
  62. 62.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353 PubMedCrossRefGoogle Scholar
  63. 63.
    Danesh J, Collins R, Appleby P, Peto R (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA 279:1477–1482. doi:10.1001/jama.279.18.1477 PubMedCrossRefGoogle Scholar
  64. 64.
    Di Napoli M, Papa F, Bocola V (2001) C-reactive protein in ischemic stroke: an independent prognostic factor. Stroke 32:917–924PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Makbule Aydin
    • 1
  • Cahide Gokkusu
    • 2
  • Elif Ozkok
    • 1
  • Feti Tulubas
    • 2
  • Yesim Unlucerci
    • 2
  • Burak Pamukcu
    • 3
  • Zeynep Ozbek
    • 4
  • Berrin Umman
    • 3
  1. 1.Department of Neuroscience, The Institute for Experimental MedicineIstanbul UniversityIstanbulTurkey
  2. 2.Department of Biochemistry, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey
  3. 3.Department of Cardiology, Istanbul Medical FacultyIstanbul UniversityIstanbulTurkey
  4. 4.Eyup State HospitalIstanbulTurkey

Personalised recommendations