Molecular and Cellular Biochemistry

, Volume 325, Issue 1–2, pp 121–130 | Cite as

Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver

  • Tseye-Oidov Odbayar
  • Toshinori Kimura
  • Tojiro Tsushida
  • Takashi Ide
Article

Abstract

The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague–Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

Keywords

Quercetin DNA microarray Drug metabolism Glutathione transferase Aldo-keto reductase 

Notes

Acknowledgments

This study was supported by the JSPS ronpaku (dissertation Ph.D.) program of the Ministry of Education, Science, Sports and Culture, no. MOSTEC-10543, and a grant from the Ministry of Agriculture, Forestry and Fisheries (MAFF) research project “Development of evaluation and management methods for supply of safe, reliable and functional food and farm produce”.

References

  1. 1.
    Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev 5:196–208PubMedGoogle Scholar
  2. 2.
    Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337. doi:10.1016/j.ejphar.2008.03.008 PubMedCrossRefGoogle Scholar
  3. 3.
    Lambert JD, Hong J, Yang GY, Liao J, Yang CS (2005) Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81(1Suppl):284S–291SPubMedGoogle Scholar
  4. 4.
    Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20:187–210. doi:10.1016/j.tiv.2005.06.048 PubMedCrossRefGoogle Scholar
  5. 5.
    Mandlekar S, Hong JL, Kong AN (2006) Modulation of metabolic enzymes by dietary phytochemicals: a review of mechanisms underlying beneficial versus unfavorable effects. Curr Drug Metab 7:661–675. doi:10.2174/138920006778017795 PubMedCrossRefGoogle Scholar
  6. 6.
    Siess MH, Guillermic M, Le Bon AM, Suschetet M (1989) Induction of monooxygenase and transferase activities in rat by dietary administration of flavonoids. Xenobiotica 19:1379–1386PubMedCrossRefGoogle Scholar
  7. 7.
    Canivenc-Lavier MC, Vernevaut MF, Totis M, Siess MH, Magdalou J, Suschetet M (1996) Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Toxicology 114:19–27. doi:10.1016/S0300-483X(96)03412-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Brouard C, Siess MH, Vernevaut MF, Suschetet M (1988) Comparison of the effects of feeding quercetin or flavone on hepatic and intestinal drug-metabolizing enzymes of the rat. Food Chem Toxicol 26:99–103. doi:10.1016/0278-6915(88)90105-6 PubMedCrossRefGoogle Scholar
  9. 9.
    van der Logt EM, Roelofs HM, Nagengast FM, Peters WH (2003) Induction of rat hepatic and intestinal UDP-glucuronosyltransferases by naturally occurring dietary anticarcinogens. Carcinogenesis 24:1651–1656. doi:10.1093/carcin/bgg117 PubMedCrossRefGoogle Scholar
  10. 10.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951PubMedGoogle Scholar
  11. 11.
    Ide T (2005) Interaction of fish oil and conjugated linoleic acid in affecting hepatic activity of lipogenic enzymes and gene expression in liver and adipose tissue. Diabetes 54:412–423. doi:10.2337/diabetes.54.2.412 PubMedCrossRefGoogle Scholar
  12. 12.
    Pearson WR (2005) Phylogenies of glutathione transferase families. Methods Enzymol 401:186–204. doi:10.1016/S0076-6879(05)01012-8 PubMedCrossRefGoogle Scholar
  13. 13.
    Penning TM, Drury JE (2007) Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 464:241–250. doi:10.1016/j.abb.2007.04.024 PubMedCrossRefGoogle Scholar
  14. 14.
    Warner DR, Mozier NM, Pearson JD, Hoffman JL (1995) Cloning and base sequence analysis of a cDNA encoding mouse lung thioether S-methyltransferase. Biochim Biophys Acta 1246:160–166. doi:10.1016/0167-4838(94)00186-K PubMedGoogle Scholar
  15. 15.
    Ishikura S, Usami N, Araki M, Hara A (2005) Structural and functional characterization of rabbit and human l-gulonate 3-dehydrogenase. J Biochem 137:303–314. doi:10.1093/jb/mvi033 PubMedCrossRefGoogle Scholar
  16. 16.
    Linster CL, Van Schaftingen E, Vitamin C (2007) Biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22. doi:10.1111/j.1742-4658.2006.05607.x PubMedCrossRefGoogle Scholar
  17. 17.
    Huynh H, Ng CY, Ong CK, Lim KB, Chan TW (2001) Cloning and characterization of a novel pregnancy-induced growth inhibitor in mammary gland. Endocrinology 142:3607–3615. doi:10.1210/en.142.8.3607 PubMedCrossRefGoogle Scholar
  18. 18.
    Li R, Chen W, Yanes R, Lee S, Berliner JA (2007) OKL38 is an oxidative stress response gene stimulated by oxidized phospholipids. J Lipid Res 48:709–715. doi:10.1194/jlr.M600501-JLR200 PubMedCrossRefGoogle Scholar
  19. 19.
    Hockley SL, Arlt VM, Brewer D, Giddings I, Phillips DH (2006) Time- and concentration-dependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepG2. BMC Genomics 7:260. doi:10.1186/1471-2164-7-260 PubMedCrossRefGoogle Scholar
  20. 20.
    Morand C, Crespy V, Manach C, Besson C, Demigné C, Rémésy C (1998) Plasma metabolites of quercetin and their antioxidant properties. Am J Physiol 275:R212–R219PubMedGoogle Scholar
  21. 21.
    Conquer JA, Maiani G, Azzini E, Raguzzini A, Holub BJ (1998) Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 128:593–597PubMedGoogle Scholar
  22. 22.
    Beatty ER, O’Reilly JD, England TG, McAnlis GT, Young IS, Geissler CA, Sanders TA, Wiseman H (2000) Effect of dietary quercetin on oxidative DNA damage in healthy human subjects. Br J Nutr 84:919–925. doi:10.1017/S0007114500002555 PubMedGoogle Scholar
  23. 23.
    Egert S, Wolffram S, Bosy-Westphal A, Boesch-Saadatmandi C, Wagner AE, Frank J, Rimbach G, Mueller MJ (2008) Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. J Nutr 138:1615–1621PubMedGoogle Scholar
  24. 24.
    Primiano T, Egner PA, Sutter TR, Kelloff GJ, Roebuck BD, Kensler TW (1995) Intermittent dosing with oltipraz: relationship between chemoprevention of aflatoxin-induced tumorigenesis and induction of glutathione S-transferases. Cancer Res 55:4319–4324PubMedGoogle Scholar
  25. 25.
    Pickett CB, Telakowski-Hopkins CA, Ding GJ, Argenbright L, Lu AY (1984) Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital. J Biol Chem 259:5182–5188PubMedGoogle Scholar
  26. 26.
    Hayes JD, Nguyen T, Judah DJ, Petersson DG, Neal GE (1994) Cloning of cDNAs from fetal rat liver encoding glutathione S-transferase Yc polypeptides. The Yc2 subunit is expressed in adult rat liver resistant to the hepatocarcinogen aflatoxin B1. J Biol Chem 269:20707–20717PubMedGoogle Scholar
  27. 27.
    Kelly VP, Ellis EM, Manson MM, Chanas SA, Moffat GJ, McLeod R, Judah DJ, Neal GE, Hayes JD (2000) Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver. Cancer Res 60:957–969PubMedGoogle Scholar
  28. 28.
    Hayes JD, Judah DJ, McLellan LI, Kerr LA, Peacock SD, Neal GE (1991) Ethoxyquin-induced resistance to aflatoxin B1 in the rat is associated with the expression of a novel Alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin B1-8, 9-epoxide. Biochem J 279(Pt 2):385–398PubMedGoogle Scholar
  29. 29.
    Devi A, Devaraj H (2006) Induction and expression of GST-Pi foci in the liver of Cyclophosphamide-administered rats. Toxicology 217:120–128. doi:10.1016/j.tox.2005.09.007 PubMedCrossRefGoogle Scholar
  30. 30.
    Henderson CJ, Wolf CR (2005) Disruption of the glutathione transferase pi class genes. Methods Enzymol 401:116–135. doi:10.1016/S0076-6879(05)01007-4 PubMedCrossRefGoogle Scholar
  31. 31.
    Coggan M, Flanagan JU, Parker MW, Vichai V, Pearson WR, Board PG (2002) Identification and characterization of GSTT3, a third murine Theta class glutathione transferase. Biochem J 366(Pt 1):323–332. doi:10.1042/BJ20011878 PubMedGoogle Scholar
  32. 32.
    Cao D, Fan ST, Chung SS (1998) Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem 273:11429–11435. doi:10.1074/jbc.273.19.11429 PubMedCrossRefGoogle Scholar
  33. 33.
    Spite M, Baba SP, Ahmed Y, Barski OA, Nijhawan K, Petrash JM, Bhatnagar A, Srivastava S (2007) Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem J 405:95–105. doi:10.1042/BJ20061743 PubMedGoogle Scholar
  34. 34.
    Hayes JD, Judah DJ, Neal GE (1993) Resistance to aflatoxin B1 is associated with the expression of a novel aldo-keto reductase which has catalytic activity towards a cytotoxic aldehyde-containing metabolite of the toxin. Cancer Res 53:3887–3894PubMedGoogle Scholar
  35. 35.
    Ellis EM, Judah DJ, Neal GE, Hayes JD (1993) An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases. Proc Natl Acad Sci USA 90:10350–10354. doi:10.1073/pnas.90.21.10350 PubMedCrossRefGoogle Scholar
  36. 36.
    Ellis EM, Judah DJ, Neal GE, O’Connor T, Hayes JD (1996) Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors. Cancer Res 56:2758–2766PubMedGoogle Scholar
  37. 37.
    Siess MH, Mas JP, Canivenc-Lavier MC, Suschetet M (1996) Time course of induction of rat hepatic drug-metabolizing enzyme activities following dietary administration of flavonoids. J Toxicol Environ Health 49:481–496. doi:10.1080/009841096160709 PubMedCrossRefGoogle Scholar
  38. 38.
    Xu C, Li CY, Kong AN (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28:249–268. doi:10.1007/BF02977789 PubMedCrossRefGoogle Scholar
  39. 39.
    Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274:33627–33636. doi:10.1074/jbc.274.47.33627 PubMedCrossRefGoogle Scholar
  40. 40.
    Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi AM (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1:827–837PubMedGoogle Scholar
  41. 41.
    Myhrstad MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ (2002) Flavonoids increase the intracellular glutathione level by transactivation of the γ-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med 32:386–393. doi:10.1016/S0891-5849(01)00812-7 PubMedCrossRefGoogle Scholar
  42. 42.
    Valerio LG Jr, Kepa JK, Pickwell GV, Quattrochi LC (2001) Induction of human NAD(P)H:quinone oxidoreductase (NQO1) gene expression by the flavonol quercetin. Toxicol Lett 119:49–57. doi:10.1016/S0378-4274(00)00302-7 PubMedCrossRefGoogle Scholar
  43. 43.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. doi:10.1146/annurev.pharmtox.45.120403.095857 PubMedCrossRefGoogle Scholar
  44. 44.
    Ellis EM, Slattery CM, Hayes JD (2003) Characterization of the rat aflatoxin B1 aldehyde reductase gene, AKR7A1 Structure and chromosomal localization of AKR7A1 as well as identification of antioxidant response elements in the gene promoter. Carcinogenesis 24:727–737. doi:10.1093/carcin/bgg016 PubMedCrossRefGoogle Scholar
  45. 45.
    Nishinaka T, Yabe-Nishimura C (2005) Transcription factor Nrf2 regulates promoter activity of mouse aldose reductase (AKR1B3) gene. J Pharmacol Sci 97:43–51. doi:10.1254/jphs.FP0040404 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • Tseye-Oidov Odbayar
    • 1
  • Toshinori Kimura
    • 2
  • Tojiro Tsushida
    • 3
  • Takashi Ide
    • 3
  1. 1.Department of Food Processing and Services, Institute of Food BiotechnologyMongolian University of Science and TechnologyUlaanbaatarMongolia
  2. 2.Laboratory of Agricultural Process Engineering, Graduate School of AgricultureHokkaido UniversitySapporoJapan
  3. 3.Laboratory of Nutritional Function, Division of Food FunctionalityNational Food Research InstituteTsukubaJapan

Personalised recommendations