Molecular and Cellular Biochemistry

, Volume 321, Issue 1–2, pp 155–164 | Cite as

Prevalent role of Akt and ERK activation in cardioprotective effect of Ca2+ channel- and beta-adrenergic receptor blockers

  • Krisztina Kovacs
  • Katalin Hanto
  • Zita Bognar
  • Antal Tapodi
  • Eszter Bognar
  • Gyongyi N. Kiss
  • Aliz Szabo
  • Gabor Rappai
  • Tamas Kiss
  • Balazs Sumegi
  • Ferenc GallyasJr.


We studied cardioprotective as well as Akt and extracellular signal-activated kinase (ERK) activating effect of a Ca2+ antagonist and a beta-adrenergic receptor blocker during ischemia-reperfusion, and compared these properties of the substances with that of a poly(ADP-ribose) polymerase (PARP) inhibitor used as a positive control throughout the experiments. Langendorff-perfused isolated rat hearts were subjected to 25 min global ischemia followed by 45 min reperfusion, and recovery of energy metabolism as well as functional cardiac parameters were monitored. Although to varying extents, all substances improved recovery of creatine phosphate, ATP, intracellular pH, and reutilization of inorganic phosphate. These favorable changes were accompanied by improved recovery of heart function parameters and reduced infarct size. In addition and again to varying extents, all studied substances decreased oxidative damage (lipid peroxidation and protein oxidation), and activated Akt, glycogen synthase kinase (GSK)-3β, and ERK1/2. Correlation between cardioprotective and kinase activating effectivity of the compounds proved to be statistically significant. Physiological significance of these kinase activations was established by demonstrating that inhibition of Akt by LY294002 and ERK1/2 by PD98059 compromised the cardioprotective effect of all the substances studied. In conclusion, we demonstrated for the first time that activation of phosphatidylinositol-3-kinase (PI-3K)-Akt and ERK2 pathways significantly contributed to cardioprotective effects of a Ca2+ antagonist and a β-adrenergic receptor blocker. Furthermore, we found a strong correlation between cardioprotective and kinase-activating potencies of the substances studied (Verapamil, Metoprolol and two PARP inhibitors), which indicated the potentiality of these kinases as drug-targets in the therapy of ischemic heart disease.


Ischemia-reperfusion Beta-adrenergic receptor blocker Ca-channel blocker Akt ERK 


  1. 1.
    Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321. doi:10.1016/j.cardiores.2006.02.019 PubMedCrossRefGoogle Scholar
  2. 2.
    Xia Y, Khatchikian G, Zweier JL (1996) Adenosine deaminase inhibition prevents free radical-mediated injury in the postischemic heart. J Biol Chem 271:10096–10102. doi:10.1074/jbc.271.19.11204 PubMedCrossRefGoogle Scholar
  3. 3.
    Rowe GT, Manson NH, Caplan M, Hess ML (1983) Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. Circ Res 53:584–591PubMedGoogle Scholar
  4. 4.
    Werner E (2004) GTPases and reactive oxygen species: switches for killing and signaling. J Cell Sci 117(Pt 2):143–153. doi:10.1242/jcs.00937 PubMedCrossRefGoogle Scholar
  5. 5.
    Tapodi A, Debreceni B, Hanto K, Bognar Z, Wittmann I, Gallyas F Jr et al (2005) Pivotal role of Akt activation in mitochondrial protection and cell survival by poly(ADP-ribose)polymerase-1 inhibition in oxidative stress. J Biol Chem 280(42):35767–35775. doi:10.1074/jbc.M507075200 PubMedCrossRefGoogle Scholar
  6. 6.
    Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D et al (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38(2):367–374. doi:10.1016/j.yjmcc.2004.12.001 PubMedCrossRefGoogle Scholar
  7. 7.
    Uchiyama T, Otani H, Okada T, Ninomiya H, Kido M, Imamura H et al (2002) Nitric oxide induces caspase-dependent apoptosis and necrosis in neonatal rat cardiomyocytes. J Mol Cell Cardiol 34(8):1049–1061. doi:10.1006/jmcc.2002.2045 PubMedCrossRefGoogle Scholar
  8. 8.
    Szabo C (2005) Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 52(1):34–43. doi:10.1016/j.phrs.2005.02.017 PubMedCrossRefGoogle Scholar
  9. 9.
    de la Lastra CA, Villegas I, Sanchez-Fidalgo S (2007) Poly(ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 13(8):933–962. doi:10.2174/138161207780414241 PubMedCrossRefGoogle Scholar
  10. 10.
    Palfi A, Toth A, Kulcsar G, Hanto K, Deres P, Bartha E et al (2005) The role of Akt and mitogen-activated protein kinase systems in the protective effect of poly(ADP-ribose) polymerase inhibition in Langendorff perfused and in isoproterenol-damaged rat hearts. J Pharmacol Exp Ther 315(1):273–282. doi:10.1124/jpet.105.088336 PubMedCrossRefGoogle Scholar
  11. 11.
    Veres B, Gallyas F Jr, Varbiro G, Berente Z, Osz E, Szekeres G et al (2003) Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem Pharmacol 65:1373–1382. doi:10.1016/S0006-2952(03)00077-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Veres B, Radnai B, Gallyas F Jr, Varbiro G, Berente Z, Osz E et al (2004) Regulation of kinase cascades and transcription factors by a poly(ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp Ther 310(1):247–255. doi:10.1124/jpet.104.065151 PubMedCrossRefGoogle Scholar
  13. 13.
    Kovacs K, Toth A, Deres P, Kalai T, Hideg K, Gallyas F Jr et al (2006) Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion. Biochem Pharmacol 71:441–452. doi:10.1016/j.bcp.2005.05.036 PubMedCrossRefGoogle Scholar
  14. 14.
    Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W et al (2000) Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102:2873–2879PubMedGoogle Scholar
  15. 15.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321. doi:10.1126/science.282.5392.1318 PubMedCrossRefGoogle Scholar
  16. 16.
    Scheid MP, Woodgett JR (2001) PKB/Akt: functional insight from genetic models. Natl Rev 2:760–768Google Scholar
  17. 17.
    Romashkova JA, Makarov SS (1999) NF-κB is a target of Akt in antiapoptotic PDGF signaling. Nature 401:86–89. doi:10.1038/43474 PubMedCrossRefGoogle Scholar
  18. 18.
    Dimmeler S, Fleming I, Fisslthalter B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase by Akt dependent phosphorylation. Nature 399:601–605. doi:10.1038/21224 PubMedCrossRefGoogle Scholar
  19. 19.
    Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA et al (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502. doi:10.1161/01.CIR.0000012529.00367.0F PubMedCrossRefGoogle Scholar
  20. 20.
    Halmosi R, Berente Z, Osz E, Toth K, Literati-Nagy P, Sumegi B (2001) Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cardiac injury and mitochondrial metabolism in Langendorff heart perfusion system. Mol Pharmacol 59:1497–1505PubMedGoogle Scholar
  21. 21.
    Deres P, Halmosi R, Toth A, Kovacs K, Palfi A, Habon T et al (2005) Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound. J Cardiovasc Pharmacol 45(1):36–43. doi:10.1097/00005344-200501000-00007 PubMedCrossRefGoogle Scholar
  22. 22.
    Szabados E, Fischer GM, Gallyas F Jr, Kispal G, Sumegi B (1999) Enhanced ADP-ribosilation and its diminution by lipoamide following ischemia-reperfusion in perfused rat heart. Free Radic Biol Med 27(9/10):1103–1113. doi:10.1016/S0891-5849(99)00151-3 PubMedCrossRefGoogle Scholar
  23. 23.
    Toth A, Halmosi R, Kovacs K, Deres P, Kalai T, Hideg K et al (2003) Akt activation induced by an antioxidant compound during ischemia-reperfusion. Free Radic Biol Med 35:1051–1063. doi:10.1016/S0891-5849(03)00467-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Lee S-R, Yang K-S, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 23:20336–20342. doi:10.1074/jbc.M111899200 CrossRefGoogle Scholar
  25. 25.
    Dauterman K, Topol E (2002) Optimal treatment and current situation in reperfusion after thrombolysis for acute myocardial infarction. Ann Med 34(7–8):514–522. doi:10.1080/078538902321117724 PubMedCrossRefGoogle Scholar
  26. 26.
    Mehta JL (1994) Emerging options in the management of myocardial ischemia. Am J Cardiol 73(3):18A–27A. doi:10.1016/0002-9149(94)90270-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Buser PT, Wagner S, Wu ST, Derugin N, Parmley WW, Higgins CB et al (1989) Verapamil preserves myocardial performance and energy metabolism in left ventricular hypertrophy following ischemia and reperfusion. Phosphorus 31 magnetic resonance spectroscopy study. Circulation 80(6):1837–1845PubMedGoogle Scholar
  28. 28.
    Wolfe CL, Donnely TJ, Sievers R, Parmley WW (1991) Myocardial protection with verapamil during ischaemia and reperfusion: dissociation between myocardial salvage and the degree of ATP depletion during ischaemia. Cardiovasc Res 25(2):101–109. doi:10.1093/cvr/25.2.101 PubMedCrossRefGoogle Scholar
  29. 29.
    Farkas A, Qureshi A, Curtis M (1999) Inadequate ischaemia-selectivity limits the antiarrhythmic efficacy of mibefradil during regional ischaemia and reperfusion in the rat isolated perfused heart. Br J Pharmacol 128:41–50. doi:10.1038/sj.bjp.0702778 PubMedCrossRefGoogle Scholar
  30. 30.
    Markiewicz W, Wu SS, Sievers R, Parmley WW, Watters TA, James TL et al (1988) Beneficial effects of verapamil during metabolic acidosis in isolated perfused rat hearts. Cardiovasc Drugs Ther 1(5):493–502. doi:10.1007/BF02125732 PubMedCrossRefGoogle Scholar
  31. 31.
    Kalaycioglu S, Sinci V, Imren Y, Öz E (1999) Metoprolol prevents ischemia-reperfusion injury by reducing lipid peroxidation. Jpn Circ J 63:718–721. doi:10.1253/jcj.63.718 PubMedCrossRefGoogle Scholar
  32. 32.
    Bradley L, Doggrell SA (1984) Effects of the (+/−)-, (+)- and (−)-forms of propranolol, timolol and metoprolol on noradrenergic transmission in the rat isolated right ventricle. Arch Int Pharmacodyn Ther 270(1):61–78PubMedGoogle Scholar
  33. 33.
    Communal C, Colucci WS (2005) The control of cardiomyocyte apoptosis via the beta-adrenergic signaling pathways. Arch Mal Coeur Vaiss 98(3):236–241PubMedGoogle Scholar
  34. 34.
    Zhou H, Li XM, Meinkoth J, Pittman RN (2000) Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol 151:483–494. doi:10.1083/jcb.151.3.483 PubMedCrossRefGoogle Scholar
  35. 35.
    Crossthwaite AJ, Hasan S, Williams RJ (2002) Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. J Neurochem 80(1):24–35. doi:10.1046/j.0022-3042.2001.00637.x PubMedCrossRefGoogle Scholar
  36. 36.
    Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279(39):40419–40430. doi:10.1074/jbc.M405079200 PubMedCrossRefGoogle Scholar
  37. 37.
    Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF et al (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33(4):1101–1106. doi:10.1161/01.STR.0000014203.65693.1E PubMedCrossRefGoogle Scholar
  38. 38.
    DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510. doi:10.1146/annurev.physiol.69.022405.154749 PubMedCrossRefGoogle Scholar
  39. 39.
    Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278(51):51334–51339. doi:10.1074/jbc.M309968200 PubMedCrossRefGoogle Scholar
  40. 40.
    Raju RV, Kakkar R, Radhi JM, Sharma RK (1997) Biological significance of phosphorylation and myristoylation in the regulation of cardiac muscle proteins. Mol Cell Biochem 176(1–2):135–143. doi:10.1023/A:1006891302017 PubMedCrossRefGoogle Scholar
  41. 41.
    Abdel-Latif AA (2001) Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle. Exp Biol Med (Maywood) 226(3):153–163Google Scholar
  42. 42.
    Nadif Kasri N, Bultynck G, Sienaert I, Callewaert G, Erneux C, Missiaen L, Parys JB, De Smedt H (2002) The role of calmodulin for inositol 1, 4, 5-trisphosphate receptor function. Biochim Biophys Acta 1600(1–2):19–31PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Krisztina Kovacs
    • 1
  • Katalin Hanto
    • 2
  • Zita Bognar
    • 1
  • Antal Tapodi
    • 1
  • Eszter Bognar
    • 1
  • Gyongyi N. Kiss
    • 1
  • Aliz Szabo
    • 1
  • Gabor Rappai
    • 3
  • Tamas Kiss
    • 2
  • Balazs Sumegi
    • 1
  • Ferenc GallyasJr.
    • 1
  1. 1.Department of Biochemistry and Medical ChemistryUniversity of Pecs Medical SchoolPecsHungary
  2. 2.Department of Anaesthesia and Intensive TherapyUniversity of Pecs Medical SchoolPecsHungary
  3. 3.Department of Statistics and Demography, Faculty of EconomicsUniversity of PecsPecsHungary

Personalised recommendations