Molecular and Cellular Biochemistry

, Volume 321, Issue 1–2, pp 95–102 | Cite as

Role of immunoexpression of nitric oxide synthases by Hodgkin and Reed-Sternberg cells on apoptosis deregulation and on clinical outcome of classical Hodgkin lymphoma

  • Antônio H. J. F. M. Campos
  • Vera L. Aldred
  • Karina C. B. Ribeiro
  • José Vassallo
  • Fernando A. Soares
Article

Abstract

Hodgkin and Reed-Sternberg (H-RS) cells of classical Hodgkin lymphoma (cHL) present an impaired expression of immunoglobulin genes, but escape apoptotic death. We investigated whether nitric oxide synthases (NOS) are expressed by H-RS cells, studied their association with EBV status and the expression of apoptotic proteins, and investigated their relationship to the clinical outcome of 171 patients. NOS1 and NOS2 were expressed in a large number of cases, whereas NOS3 expression was not detected. Positive associations were found between NOS1 and p53, bax and NOS2, bcl-2 and NOS2, bax and p53, and between bax and fasL. Inverse correlations were established between EBV and NOS2 and between EBV and bcl-2. A shorter overall survival (OS) was associated with strong expression of NOS2. In conclusion, NOS are expressed by H-RS cells of cHL.

Keywords

Classical Hodgkin lymphoma Nitric oxide synthases Apoptosis-related proteins Epstein–Barr virus Prognosis 

Notes

Acknowledgments

The authors are grateful to Mr. José Ivanildo Neves, Mrs. Sueli Nonogaki, Mrs. Osiris Pereira Santos, Mr. Severino da Silva Ferreira, and Mr. César Eugênio Nascimento Braga for their excellent technical assistance. The present study was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant # 03/06989-2). JV and FAS are researchers of the CNPq (Conselho Nacional de Pesquisas Científicas).

References

  1. 1.
    Theil J, Laumen H, Marafioti T, Lenz G, Wirth T, Stein H (2001) Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed-Sternberg cells. Blood 97:3191–3196. doi:10.1182/blood.V97.10.3191 PubMedCrossRefGoogle Scholar
  2. 2.
    Ushmorov A, Ritz O, Hummel M et al (2004) Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 104:3326–3334. doi:10.1182/blood-2003-04-1197 PubMedCrossRefGoogle Scholar
  3. 3.
    Brink AA, Oudejans JJ, van den Brule AJ et al (1998) Low p53 and high bcl-2 expression in Reed-Sternberg cells predicts poor clinical outcome for Hodgkin’s disease: involvment of apoptosis resistance? Mod Pathol 11:376–383PubMedGoogle Scholar
  4. 4.
    Rassidakis GZ, Medeiros LJ, McDonnell TJ et al (2002) BAX expression in Hodgkin and Reed-Sternberg cells of Hodgkin’s disease: correlation with clinical outcome. Clin Cancer Res 8(2):488–493PubMedGoogle Scholar
  5. 5.
    Rassidakis GZ, Medeiros LJ, Vassilakopoulos TP et al (2002) BCL-2 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens. Blood 100:3935–3941. doi:10.1182/blood.V100.12.3935 PubMedCrossRefGoogle Scholar
  6. 6.
    Vassallo J, Metze K, Traina F et al (2003) The prognostic relevance of apoptosis-related proteins in classical Hodgkin’s lymphomas. Leuk Lymphoma 44(3):483–488. doi:10.1080/1042819021000037958 PubMedCrossRefGoogle Scholar
  7. 7.
    Kim L-H, Nadarajah VS, Peh SC, Poppema S (2004) Expression of Bcl-2 family members and presence of Epstein–Barr virus in the regulation of cell growth and death in classical Hodgkin’s lymphoma. Histopathology 44:257–267. doi:10.1111/j.0309-0167.2004.01829.x PubMedCrossRefGoogle Scholar
  8. 8.
    García JF, Camacho FI, Morente M et al (2003) Hodgkin and Reed-Sternberg cells harbour alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 101:681–689. doi:10.1182/blood-2002-04-1128 PubMedCrossRefGoogle Scholar
  9. 9.
    Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456. doi:10.1016/S0891-5849(98)00092-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142PubMedGoogle Scholar
  11. 11.
    Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22(12):477–481. Erratum in: (1998) Trends Biochem Sci 23(2):87. doi:10.1016/S0968-0004(97)01147-X Google Scholar
  12. 12.
    Forstermann U, Closs EI, Pollock JS et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131PubMedGoogle Scholar
  13. 13.
    Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918. doi:10.1016/0092-8674(94)90266-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Kim PK, Zamora R, Petrosko P, Billiar TR (2001) The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 1(8):1421–1441. doi:10.1016/S1567-5769(01)00088-1 PubMedCrossRefGoogle Scholar
  15. 15.
    Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein–Barr virus reactivation. Cell 79(7):1137–1146. doi:10.1016/0092-8674(94)90005-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351(3):261–272. doi:10.1016/S0014-2999(98)00274-X PubMedCrossRefGoogle Scholar
  17. 17.
    Xu W, Liu LH, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12(5–6):311–320. doi:10.1038/sj.cr.7290133 PubMedCrossRefGoogle Scholar
  18. 18.
    Harris NL, Jaffe ES, Diebold J et al (1999) World Health Organization classification of neoplastic diseases of the hematopoietic, lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November 1997. J Clin Oncol 17(12):3835–3849PubMedGoogle Scholar
  19. 19.
    Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339(21):1506–1514. doi:10.1056/NEJM199811193392104 PubMedCrossRefGoogle Scholar
  20. 20.
    Soini Y, Puhakka A, Kahlos K et al (2001) Endothelial nitric oxide synthase is strongly expressed in malignant mesothelioma but does not associate with vascular density or the expression of VEGF, FLK1 or FLT1. Histopathology 39(2):179–186. doi:10.1046/j.1365-2559.2001.01211.x PubMedCrossRefGoogle Scholar
  21. 21.
    Cooper K, Haffajee Z (1997) bcl-2 and p53 protein expression in follicular lymphoma. J Pathol 182(3):307–310. doi:10.1002/(SICI)1096-9896(199707)182:3<307::AID-PATH873>3.0.CO;2-6PubMedCrossRefGoogle Scholar
  22. 22.
    Aoyagi K, Kohfuji K, Yano S et al (2002) The expression of proliferating cell nuclear antigen, p53, p21, and apoptosis in primary gastric lymphoma. Surgery 132(1):20–26. doi:10.1067/msy.2002.124929 PubMedCrossRefGoogle Scholar
  23. 23.
    Kim LH, Peh SC, Poppema S (2006) Expression of retinoblastoma protein and P16 proteins in classic Hodgkin lymphoma: relationship with expression of p53 and presence of Epstein–Barr virus in the regulation of cell growth and death. Hum Pathol 37(1):92–100. doi:10.1016/j.humpath.2005.09.028 PubMedCrossRefGoogle Scholar
  24. 24.
    Thorns C, Gaiser T, Lange K, Merz H, Feller AC (2002) cDNA arrays: gene expression profiles of Hodgkin’s disease and anaplastic cell lymphoma cell lines. Pathol Int 52(9):578–585. doi:10.1046/j.1320-5463.2002.01400.x PubMedCrossRefGoogle Scholar
  25. 25.
    Kleinert H, Pautz A, Linker K, Schwarz PM (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500(1–3):255–266. doi:10.1016/j.ejphar.2004.07.030 PubMedCrossRefGoogle Scholar
  26. 26.
    Bargou RC, Leng C, Krappmann D et al (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87:4340–4347PubMedGoogle Scholar
  27. 27.
    Bargou RC, Emmerich F, Krappmann D et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100(12):2961–2969. doi:10.1172/JCI119849 PubMedCrossRefGoogle Scholar
  28. 28.
    Mendes RV, Martins AR, de Nucci G, Murad F, Soares FA (2001) Expression of nitric oxide synthase isoforms and nitrotyrosine immunoreactivity by B-cell non-Hodgkin’s lymphomas and multiple myeloma. Histopathology 39:172–178. doi:10.1046/j.1365-2559.2001.01189.x PubMedCrossRefGoogle Scholar
  29. 29.
    Atik E, Ergin M, Erdoğan S, Tuncer I (2006) Inducible nitric oxide synthase and apoptosis in human B cell lymphomas. Mol Cell Biochem 290:205–209. doi:10.1007/s11010-005-9114-2 PubMedCrossRefGoogle Scholar
  30. 30.
    Forrester K, Ambs S, Lupold SE et al (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93(6):2442–2447. doi:10.1073/pnas.93.6.2442 PubMedCrossRefGoogle Scholar
  31. 31.
    Ambs S, Ogunfusika MO, Merrian WG, Bennett WP, Billiar TR, Harris CC (1998) Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA 95(15):8823–8828. doi:10.1073/pnas.95.15.8823 PubMedCrossRefGoogle Scholar
  32. 32.
    Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem 273(47):31437–31441. doi:10.1074/jbc.273.47.31437 PubMedCrossRefGoogle Scholar
  33. 33.
    Khan G, Gupta RK, Coates PJ, Slavin G (1993) Epstein–Barr virus infection and bcl-2 proto-oncogene expression separate events in the pathogenesis of Hodgkin’s disease? Am J Pathol 143(5):1270–1274PubMedGoogle Scholar
  34. 34.
    Jiwa NM, Oudejans JJ, Bai MC et al (1995) Expression of bcl-2 protein and transcription of Epstein–Barr virus bcl-2 homologue BHRF-1 in Hodgkin’s disease: implications for different pathogenic mechanisms. Histopathology 26(6):547–553. doi:10.1111/j.1365-2559.1995.tb00273.x PubMedCrossRefGoogle Scholar
  35. 35.
    Kroemer G (1997) The proto-oncogene bcl-2 and its role in regularing apoptosis. Nat Med 3:614–620. doi:10.1038/nm0697-614 PubMedCrossRefGoogle Scholar
  36. 36.
    Messineo C, Jamerson MH, Hunter E et al (1998) Gene expression by single Reed-Sternberg cells: pathways of apoptosis and activation. Blood 91(7):2443–2451PubMedGoogle Scholar
  37. 37.
    Morente MM, Piris MA, Abraira V et al (1997) Adverse clinical outcome in Hodgkin’s disease is associated with loss of retinoblastoma protein expression, high Ki67 proliferation index, and absence of Epstein–Barr virus-latent membrane protein 1 expression. Blood 90(6):2429–2436PubMedGoogle Scholar
  38. 38.
    Spector N, Milito CB, Biasoli I et al (2005) The prognostic value of the expression of Bcl-2, p53 and LMP-1 in patients with Hodgkin’s lymphoma. Leuk Lymphoma 46(9):1301–1306. doi:10.1080/10428190500126034 PubMedCrossRefGoogle Scholar
  39. 39.
    Nieder C, Petersen S, Petersen C et al (2001) The challenge of p53 as prognostic and predictive factor in Hodgkin’s or on-Hodgkin’s lymphoma. Ann Hematol 80(1):2–8. doi:10.1007/s002770000226 PubMedCrossRefGoogle Scholar
  40. 40.
    Elenitoba-Johnson KS, Medeiros LJ, Khorsand J et al (1996) P53 expression in Reed-Sternberg cells does not correlate with gene mutations in Hodgkin’s disease. Am J Clin Pathol 106(6):728–738PubMedGoogle Scholar
  41. 41.
    Maggio EM, Stekelenburg E, Van den Berg A et al (2001) TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein–Barr virus. Int J Cancer 94(1):60–66. doi:10.1002/ijc.1438 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Antônio H. J. F. M. Campos
    • 1
  • Vera L. Aldred
    • 2
  • Karina C. B. Ribeiro
    • 3
  • José Vassallo
    • 1
    • 4
  • Fernando A. Soares
    • 1
  1. 1.Department of PathologyA. C. Camargo Cancer Treatment and Research CenterSao PauloBrazil
  2. 2.Department of Pathology, Faculty of MedicineUniversity of São PauloSao PauloBrazil
  3. 3.Cancer RegistryA. C. Camargo Cancer Treatment and Research CenterSao PauloBrazil
  4. 4.Laboratory of Investigative and Molecular PathologyState University of Campinas Medical School, UnicampCampinas, Sao PauloBrazil

Personalised recommendations